Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Simox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Software
Simox
Simox
Commits
aed234a7
Commit
aed234a7
authored
2 years ago
by
Fabian Reister
Browse files
Options
Downloads
Patches
Plain Diff
simplified impl to obtain manipulability ellipsoid orientation and scale
parent
61b09380
No related branches found
No related tags found
1 merge request
!133
Fixes: Manipulability ellipsoid and geometric planning
Pipeline
#10450
failed
2 years ago
Stage: build-and-test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
VirtualRobot/Manipulability/AbstractManipulability.cpp
+36
-57
36 additions, 57 deletions
VirtualRobot/Manipulability/AbstractManipulability.cpp
with
36 additions
and
57 deletions
VirtualRobot/Manipulability/AbstractManipulability.cpp
+
36
−
57
View file @
aed234a7
...
...
@@ -109,70 +109,49 @@ VisualizationNodePtr AbstractManipulability::getManipulabilityVis(const Eigen::M
}
void
AbstractManipulability
::
getEllipsoidOrientationAndScale
(
const
Eigen
::
MatrixXd
&
manipulability
,
Eigen
::
Quaternionf
&
orientation
,
Eigen
::
Vector3d
&
scale
)
{
Eigen
::
Matrix3d
reduced_manipulability
=
(
mode
!=
Mode
::
Orientation
||
manipulability
.
rows
()
==
3
)
?
manipulability
.
block
(
0
,
0
,
3
,
3
)
:
manipulability
.
block
(
3
,
3
,
3
,
3
);
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
MatrixXd
>
eigenSolver
(
reduced_manipulability
);
const
Eigen
::
Matrix3d
&
eigenVectors
=
eigenSolver
.
eigenvectors
();
const
Eigen
::
Vector3d
&
eigenValues
=
eigenSolver
.
eigenvalues
();
constexpr
std
::
size_t
POSITION_DIMS
=
3
;
constexpr
std
::
size_t
ORIENTATION_DIMS
=
3
;
constexpr
std
::
size_t
POSE_DIMS
=
POSITION_DIMS
+
ORIENTATION_DIMS
;
const
Eigen
::
MatrixXd
reduced_manipulability
=
(
mode
!=
Mode
::
Orientation
||
manipulability
.
rows
()
==
3
)
?
manipulability
.
block
(
0
,
0
,
POSITION_DIMS
,
POSITION_DIMS
)
:
manipulability
.
block
(
POSITION_DIMS
,
POSITION_DIMS
,
ORIENTATION_DIMS
,
ORIENTATION_DIMS
);
const
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
MatrixXd
>
eigenSolver
(
reduced_manipulability
);
// Eigenvectors are the columns of the matrix 'eigenVectors'
// they are already normalized to have length 1
// we sort them by the eigenvalues
struct
VecVal
{
Eigen
::
Vector3d
vec
;
double
val
;
};
std
::
array
<
VecVal
,
3
>
decomp
=
{
VecVal
{.
vec
=
eigenVectors
.
col
(
0
),
.
val
=
eigenValues
(
0
)},
VecVal
{.
vec
=
eigenVectors
.
col
(
1
),
.
val
=
eigenValues
(
1
)},
VecVal
{.
vec
=
eigenVectors
.
col
(
2
),
.
val
=
eigenValues
(
2
)},
};
std
::
sort
(
decomp
.
begin
(),
decomp
.
end
(),
[](
const
auto
&
a
,
const
auto
&
b
)
{
return
a
.
val
>
b
.
val
;
});
Eigen
::
Matrix3d
transform
;
transform
.
col
(
0
)
=
decomp
[
0
].
vec
;
transform
.
col
(
1
)
=
decomp
[
1
].
vec
;
transform
.
col
(
2
)
=
decomp
[
2
].
vec
;
// Rectify the transformation matrix representing the orientation of the ellipse
// We need to make sure that is *special* orthogonal, not just orthogonal
// Flip the signs of eigenvectors that point opposite the first quadrant
// Sum of the elements is the same as a dot product with (1, 1, 1)
// We want this so that the directions of the eigenvectors is consistent,
// and because this makes transform have determinant 1
for
(
int
col
=
0
;
col
<
transform
.
cols
();
++
col
)
{
if
(
transform
.
col
(
col
).
sum
()
<
0.0
)
{
transform
.
col
(
col
)
*=
-
1.0
;
}
}
const
Eigen
::
MatrixXd
&
eigenVectors
=
eigenSolver
.
eigenvectors
();
// if the matrix still has determinant smaller than one, just flip one of the vectors back. This may be the case if all of the columns point opposite (1, 1, 1)
if
(
transform
.
determinant
()
<
0
)
{
transform
.
col
(
2
)
*=
-
1
;
}
orientation
=
transform
.
cast
<
float
>
();
// Eigen values are sorted in increasing order
const
Eigen
::
Vector3d
&
eigenValues
=
eigenSolver
.
eigenvalues
();
// We create a ortho-normal basis of the eigen vectors.
// Here, we use the eigen vectors with the eigen values in decreasing order.
// To ensure a right-handed coordinate system, the third basis vector is computed
// by using the cross product.
Eigen
::
Matrix3d
rotationMatrix
;
rotationMatrix
.
col
(
0
)
=
eigenVectors
.
col
(
2
);
rotationMatrix
.
col
(
1
)
=
eigenVectors
.
col
(
1
);
rotationMatrix
.
col
(
2
)
=
rotationMatrix
.
col
(
0
).
cross
(
rotationMatrix
.
col
(
1
));
orientation
=
rotationMatrix
;
scale
=
eigenValues
.
reverse
();
// Normalize eigenvalues for scaling
Eigen
::
Vector3d
s
=
Eigen
::
Vector3d
(
decomp
[
0
].
val
,
decomp
[
1
].
val
,
decomp
[
2
].
val
).
array
().
sqrt
();
s
/=
s
.
sum
();
for
(
int
i
=
0
;
i
<
s
.
rows
();
i
++
)
// normalize singular values for scaling
scale
/=
scale
.
sum
();
for
(
int
i
=
0
;
i
<
eigenValues
.
rows
();
i
++
)
{
if
(
s
(
i
)
<
0.005
)
// 5mm
s
(
i
)
=
0.005
;
}
constexpr
double
minEigenVal
=
0.005
;
// [mm]
scale
(
0
)
=
s
(
0
);
scale
(
1
)
=
s
(
1
);
scale
(
2
)
=
s
(
2
);
if
(
scale
(
i
)
<
minEigenVal
)
{
scale
(
i
)
=
minEigenVal
;
}
}
}
void
AbstractManipulability
::
getEllipsoidOrientationAndScale
(
Eigen
::
Quaternionf
&
orientation
,
Eigen
::
Vector3d
&
scale
)
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment