diff --git a/VirtualRobot/CMakeLists.txt b/VirtualRobot/CMakeLists.txt index f09afe8aab09f035f22154b49bfd182bd360abe8..85be63ded9ab3fc6ac1e8c303c036952ee23c9c0 100644 --- a/VirtualRobot/CMakeLists.txt +++ b/VirtualRobot/CMakeLists.txt @@ -326,6 +326,8 @@ SET(SOURCES Nodes/RobotNodeActuator.cpp Nodes/RobotNodeHemisphere.cpp Nodes/RobotNodeHemisphereFactory.cpp + Nodes/RobotNodeFourBar.cpp + Nodes/RobotNodeFourBarFactory.cpp Nodes/RobotNodeFixed.cpp Nodes/RobotNodeFixedFactory.cpp Nodes/RobotNodePrismatic.cpp @@ -335,6 +337,8 @@ SET(SOURCES Nodes/Sensor.cpp Nodes/HemisphereJoint/Expressions.cpp Nodes/HemisphereJoint/Joint.cpp + Nodes/FourBar/Expressions.cpp + Nodes/FourBar/Joint.cpp TimeOptimalTrajectory/Path.cpp TimeOptimalTrajectory/TimeOptimalTrajectory.cpp @@ -568,6 +572,8 @@ SET(INCLUDES Nodes/RobotNodeActuator.h Nodes/RobotNodeHemisphere.h Nodes/RobotNodeHemisphereFactory.h + Nodes/RobotNodeFourBar.h + Nodes/RobotNodeFourBarFactory.h Nodes/RobotNodeFactory.h Nodes/RobotNodeFixed.h Nodes/RobotNodeFixedFactory.h @@ -579,6 +585,8 @@ SET(INCLUDES Nodes/SensorFactory.h Nodes/HemisphereJoint/Expressions.h Nodes/HemisphereJoint/Joint.h + Nodes/FourBar/Expressions.h + Nodes/FourBar/Joint.h TimeOptimalTrajectory/Path.h TimeOptimalTrajectory/TimeOptimalTrajectory.h diff --git a/VirtualRobot/IK/DifferentialIK.cpp b/VirtualRobot/IK/DifferentialIK.cpp index fab7724348723ef73a01ddb24f3fd06d2f965bbc..e3a0a1ef355edee8d5c48e1213d6170576533c1f 100644 --- a/VirtualRobot/IK/DifferentialIK.cpp +++ b/VirtualRobot/IK/DifferentialIK.cpp @@ -7,6 +7,8 @@ #include "../VirtualRobotException.h" #include "../CollisionDetection/CollisionChecker.h" #include <VirtualRobot/Nodes/RobotNodeHemisphere.h> +#include <VirtualRobot/Nodes/RobotNodeFourBar.h> +#include <VirtualRobot/Nodes/RobotNodeHemisphere.h> #include <Eigen/Geometry> @@ -507,6 +509,11 @@ namespace VirtualRobot // Pass } } + else if (dof->isFourBarJoint()) + { + const RobotNodeFourBar* fourBarJoint = dynamic_cast<RobotNodeFourBar*>(dof.get()); + // FIXME implement + } } #ifdef CHECK_PERFORMANCE diff --git a/VirtualRobot/Nodes/FourBar/Expressions.cpp b/VirtualRobot/Nodes/FourBar/Expressions.cpp new file mode 100644 index 0000000000000000000000000000000000000000..41d3b81de1244d033cffb63bad43d836e94a579b --- /dev/null +++ b/VirtualRobot/Nodes/FourBar/Expressions.cpp @@ -0,0 +1,245 @@ +/* + * This file was generated automatically on 2022-06-09 10:41. + */ + +#include "Expressions.h" + +#include <cmath> + + +namespace VirtualRobot::four_bar +{ + +void Expressions::compute(double a1, double a2, double lever, double theta0) +{ + this->a1 = a1; + this->a2 = a2; + this->lever = lever; + this->theta0 = theta0; + + _lever_p_2 = (lever * lever); + _a2_p_2 = (a2 * a2); + __s_a2_p_2 = (-1 * _a2_p_2); + __s_a2_p_2_a_lever_p_2 = (_lever_p_2 + __s_a2_p_2); + _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ = std::pow(__s_a2_p_2_a_lever_p_2, -0.5); + _lever_p_4 = std::pow(lever, 4); + _a1_p_2 = (a1 * a1); + __s_a1_p_2_m_a2_p_2 = (-1 * _a1_p_2 * _a2_p_2); + __s_a1_p_2_m_a2_p_2_a_lever_p_4 = (_lever_p_4 + __s_a1_p_2_m_a2_p_2); + _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ = (1 / __s_a1_p_2_m_a2_p_2_a_lever_p_4); + _lever_p_5 = std::pow(lever, 5); + _sin_l_theta0_r_ = std::sin(theta0); + _lever_p_5_m_sin_l_theta0_r_ = (_lever_p_5 * _sin_l_theta0_r_); + _lever_p_8 = std::pow(lever, 8); + _lever_p_6 = std::pow(lever, 6); + __s_a1_p_2_m_lever_p_6 = (-1 * _a1_p_2 * _lever_p_6); + _a1_p_4 = std::pow(a1, 4); + _a2_p_4 = std::pow(a2, 4); + __s_a1_p_4_m_a2_p_4 = (-1 * _a1_p_4 * _a2_p_4); + __s_a2_p_2_m_lever_p_6 = (-1 * _a2_p_2 * _lever_p_6); + _sin_l_theta0_r__p_2 = (_sin_l_theta0_r_ * _sin_l_theta0_r_); + __s_2_m_lever_p_8_m_sin_l_theta0_r__p_2 = (-2 * _lever_p_8 * _sin_l_theta0_r__p_2); + _a1_p_2_m_a2_p_4_m_lever_p_2 = (_a1_p_2 * _a2_p_4 * _lever_p_2); + _a1_p_4_m_a2_p_2_m_lever_p_2 = (_a1_p_4 * _a2_p_2 * _lever_p_2); + _2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2 = (2 * _a1_p_2 * _lever_p_6 * _sin_l_theta0_r__p_2); + _2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2 = (2 * _a2_p_2 * _lever_p_6 * _sin_l_theta0_r__p_2); + _a2_p_3 = std::pow(a2, 3); + __s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-2 * a1 * _a2_p_3 * _lever_p_4 * _sin_l_theta0_r__p_2); + _a1_p_3 = std::pow(a1, 3); + __s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-2 * a2 * _a1_p_3 * _lever_p_4 * _sin_l_theta0_r__p_2); + __s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-2 * _a1_p_2 * _a2_p_2 * _lever_p_4 * _sin_l_theta0_r__p_2); + _2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = (2 * a1 * a2 * _lever_p_6 * _sin_l_theta0_r__p_2); + _2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2 = (2 * _a1_p_3 * _a2_p_3 * _lever_p_2 * _sin_l_theta0_r__p_2); + __s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8 = (_lever_p_8 + __s_a1_p_2_m_lever_p_6 + __s_a1_p_4_m_a2_p_4 + __s_a2_p_2_m_lever_p_6 + __s_2_m_lever_p_8_m_sin_l_theta0_r__p_2 + _a1_p_2_m_a2_p_4_m_lever_p_2 + _a1_p_4_m_a2_p_2_m_lever_p_2 + _2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2 + _2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2 + __s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 + __s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 + __s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 + _2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 + _2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2); + _sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = std::pow(__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8, 0.5); + __s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * a2 * _sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_); + _lever_p_3 = std::pow(lever, 3); + __s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r_ = (-1 * _a2_p_2 * _lever_p_3 * _sin_l_theta0_r_); + _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r_ = (a1 * lever * _a2_p_3 * _sin_l_theta0_r_); + __s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r_ = (-1 * a1 * a2 * _lever_p_3 * _sin_l_theta0_r_); + _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ = (_lever_p_5_m_sin_l_theta0_r_ + __s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ + __s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r_ + _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r_ + __s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r_); + _2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + __s_a1_p_2 = (-1 * _a1_p_2); + __s_a1_p_2_a_lever_p_2 = (_lever_p_2 + __s_a1_p_2); + _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ = std::pow(__s_a1_p_2_a_lever_p_2, -0.5); + __s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * a1 * _sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_); + __s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r_ = (-1 * _a1_p_2 * _lever_p_3 * _sin_l_theta0_r_); + _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r_ = (a2 * lever * _a1_p_3 * _sin_l_theta0_r_); + _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ = (_lever_p_5_m_sin_l_theta0_r_ + __s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ + __s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r_ + _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r_ + __s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r_); + _2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _a1_m_a2 = (a1 * a2); + _a1_m_a2_a_lever_p_2 = (_lever_p_2 + _a1_m_a2); + _1_d__l_a1_m_a2_a_lever_p_2_r_ = (1 / _a1_m_a2_a_lever_p_2); + __s_lever_p_4 = (-1 * _lever_p_4); + _a1_p_2_m_a2_p_2 = (_a1_p_2 * _a2_p_2); + _a1_p_2_m_a2_p_2_s_lever_p_4 = (__s_lever_p_4 + _a1_p_2_m_a2_p_2); + _cos_l_theta0_r_ = std::cos(theta0); + _cos_l_theta0_r__p_2 = (_cos_l_theta0_r_ * _cos_l_theta0_r_); + __s_2_m_lever_p_4_m_cos_l_theta0_r__p_2 = (-2 * _lever_p_4 * _cos_l_theta0_r__p_2); + _a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2 = (_a1_p_2 * _lever_p_2 * _cos_l_theta0_r__p_2); + _a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2 = (_a2_p_2 * _lever_p_2 * _cos_l_theta0_r__p_2); + __s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4 = (_lever_p_4 + __s_a1_p_2_m_a2_p_2 + __s_2_m_lever_p_4_m_cos_l_theta0_r__p_2 + _a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2 + _a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2); + __l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = (_a1_p_2_m_a2_p_2_s_lever_p_4 * __s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4); + _a1_m_lever_p_2 = (a1 * _lever_p_2); + _a2_m_lever_p_2 = (a2 * _lever_p_2); + __s_a1_m_a2_p_2 = (-1 * a1 * _a2_p_2); + __s_a1_p_2_m_a2 = (-1 * a2 * _a1_p_2); + __s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2 = (_a1_m_lever_p_2 + _a2_m_lever_p_2 + __s_a1_m_a2_p_2 + __s_a1_p_2_m_a2); + __l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2 = (__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2 * __s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2); + _lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2 = (_lever_p_2 * __l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2 * _sin_l_theta0_r__p_2); + _lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = (__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ + _lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2); + _sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = std::pow(_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_, 0.5); + __l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _a1_m_a2_a_lever_p_2); + _a1_a_a2 = (a1 + a2); + _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_ = (lever * _a1_a_a2 * __s_a1_p_2_m_a2_p_2_a_lever_p_4 * _sin_l_theta0_r_); + _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ + _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_); + _2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d__l_a1_m_a2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + _1_d__l__s_a2_p_2_a_lever_p_2_r_ = (1 / __s_a2_p_2_a_lever_p_2); + __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ = std::pow(__s_a1_p_2_m_a2_p_2_a_lever_p_4, -2); + __l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2 = (_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-2 * _1_d__l__s_a2_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * __l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2); + _1_s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (1 + __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-2 * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + _1_d_lever = (1 / lever); + _4_m_lever_p_2_m_sin_l_theta0_r__p_2 = (4 * _lever_p_2 * _sin_l_theta0_r__p_2); + _1_d__l__s_a1_p_2_a_lever_p_2_r_ = (1 / __s_a1_p_2_a_lever_p_2); + __l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2 = (_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + __s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-4 * _lever_p_2 * _1_d__l__s_a1_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * __l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2 * _sin_l_theta0_r__p_2); + __s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-4 * _lever_p_2 * _1_d__l__s_a2_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * __l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2 * _sin_l_theta0_r__p_2); + _4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (_4_m_lever_p_2_m_sin_l_theta0_r__p_2 + __s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ + __s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r_ = std::pow(_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_, 0.5); + _1_d_sin_l_theta0_r_ = (1 / _sin_l_theta0_r_); + __s_sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = (-1 * _1_d_lever * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r_ * _1_d_sin_l_theta0_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + __s_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-2 * _1_d__l__s_a1_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * __l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2); + _1_s_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (1 + __s_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + __s_sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = (-1 * _1_d_lever * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r_ * _1_d_sin_l_theta0_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = (_1_d_lever * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r_ * _1_d_sin_l_theta0_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = (_1_d_lever * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r_ * _1_d_sin_l_theta0_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_); + _lever_p__l__s_2_r_ = std::pow(lever, -2); + _2_m_lever_p_2 = (2 * _lever_p_2); + __s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-4 * _lever_p_2 * _1_d__l__s_a1_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * __l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2); + __s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (-4 * _lever_p_2 * _1_d__l__s_a2_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * __l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2); + _2_m_lever_p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (_2_m_lever_p_2 + __s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ + __s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + __l_2_m_lever_p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__d__l_2_m_lever_p_2_r_ = (0.5 * _lever_p__l__s_2_r_ * _2_m_lever_p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + _a2_p_3_m_lever_m_sin_l_theta0_r_ = (lever * _a2_p_3 * _sin_l_theta0_r_); + __s_a2_m_lever_p_3_m_sin_l_theta0_r_ = (-1 * a2 * _lever_p_3 * _sin_l_theta0_r_); + _1_d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = std::pow(__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8, -0.5); + __s_a1_m_lever_p_6 = (-1 * a1 * _lever_p_6); + __s_2_m_a1_p_3_m_a2_p_4 = (-2 * _a1_p_3 * _a2_p_4); + _a1_m_a2_p_4_m_lever_p_2 = (a1 * _a2_p_4 * _lever_p_2); + _a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = (a2 * _lever_p_6 * _sin_l_theta0_r__p_2); + __s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-1 * _a2_p_3 * _lever_p_4 * _sin_l_theta0_r__p_2); + _2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2 = (2 * a1 * _lever_p_6 * _sin_l_theta0_r__p_2); + _2_m_a1_p_3_m_a2_p_2_m_lever_p_2 = (2 * _a1_p_3 * _a2_p_2 * _lever_p_2); + __s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-3 * a2 * _a1_p_2 * _lever_p_4 * _sin_l_theta0_r__p_2); + __s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-2 * a1 * _a2_p_2 * _lever_p_4 * _sin_l_theta0_r__p_2); + _3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2 = (3 * _a1_p_2 * _a2_p_3 * _lever_p_2 * _sin_l_theta0_r__p_2); + __s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = (__s_a1_m_lever_p_6 + __s_2_m_a1_p_3_m_a2_p_4 + _a1_m_a2_p_4_m_lever_p_2 + _a2_m_lever_p_6_m_sin_l_theta0_r__p_2 + __s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 + _2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2 + _2_m_a1_p_3_m_a2_p_2_m_lever_p_2 + __s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 + __s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 + _3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2); + __s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * a2 * _1_d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * __s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2); + _a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (_a2_p_3_m_lever_m_sin_l_theta0_r_ + __s_a2_m_lever_p_3_m_sin_l_theta0_r_ + __s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_); + _2_m_lever_m__l_a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * _sin_l_theta0_r_); + _4_m_a1_m_a2_p_2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (4 * a1 * lever * _a2_p_2 * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _4_m_a1_m_a2_p_2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_lever_m__l_a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (_2_m_lever_m__l_a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _4_m_a1_m_a2_p_2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + __s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * _sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_); + __s_a1_m_lever_p_3_m_sin_l_theta0_r_ = (-1 * a1 * _lever_p_3 * _sin_l_theta0_r_); + __s_a2_m_lever_p_6 = (-1 * a2 * _lever_p_6); + __s_2_m_a1_p_4_m_a2_p_3 = (-2 * _a1_p_4 * _a2_p_3); + _a1_m_lever_p_6_m_sin_l_theta0_r__p_2 = (a1 * _lever_p_6 * _sin_l_theta0_r__p_2); + _a1_p_4_m_a2_m_lever_p_2 = (a2 * _a1_p_4 * _lever_p_2); + __s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-1 * _a1_p_3 * _lever_p_4 * _sin_l_theta0_r__p_2); + _2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = (2 * a2 * _lever_p_6 * _sin_l_theta0_r__p_2); + _2_m_a1_p_2_m_a2_p_3_m_lever_p_2 = (2 * _a1_p_2 * _a2_p_3 * _lever_p_2); + __s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-3 * a1 * _a2_p_2 * _lever_p_4 * _sin_l_theta0_r__p_2); + __s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 = (-2 * a2 * _a1_p_2 * _lever_p_4 * _sin_l_theta0_r__p_2); + _3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2 = (3 * _a1_p_3 * _a2_p_2 * _lever_p_2 * _sin_l_theta0_r__p_2); + __s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6 = (__s_a2_m_lever_p_6 + __s_2_m_a1_p_4_m_a2_p_3 + _a1_m_lever_p_6_m_sin_l_theta0_r__p_2 + _a1_p_4_m_a2_m_lever_p_2 + __s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 + _2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 + _2_m_a1_p_2_m_a2_p_3_m_lever_p_2 + __s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 + __s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 + _3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2); + __s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * a2 * _1_d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * __s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6); + __s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r_ = (-2 * a2 * _lever_p_3 * _sin_l_theta0_r_); + _3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r_ = (3 * a1 * lever * _a2_p_2 * _sin_l_theta0_r_); + _3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ + __s_a1_m_lever_p_3_m_sin_l_theta0_r_ + __s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ + __s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r_ + _3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r_); + _2_m_lever_m__l_3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * _sin_l_theta0_r_); + __l__s_a2_p_2_a_lever_p_2_r__p__l__s_1_t_5_r_ = std::pow(__s_a2_p_2_a_lever_p_2, -1.5); + _2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a2_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * a2 * lever * __l__s_a2_p_2_a_lever_p_2_r__p__l__s_1_t_5_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _4_m_a1_p_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (4 * a2 * lever * _a1_p_2 * _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _4_m_a1_p_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a2_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l_3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (_2_m_lever_m__l_3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a2_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _4_m_a1_p_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + __s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * a1 * _1_d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * __s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2); + __s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r_ = (-2 * a1 * _lever_p_3 * _sin_l_theta0_r_); + _3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r_ = (3 * a2 * lever * _a1_p_2 * _sin_l_theta0_r_); + _3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ + __s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ + __s_a2_m_lever_p_3_m_sin_l_theta0_r_ + __s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r_ + _3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r_); + _2_m_lever_m__l_3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * _sin_l_theta0_r_); + __l__s_a1_p_2_a_lever_p_2_r__p__l__s_1_t_5_r_ = std::pow(__s_a1_p_2_a_lever_p_2, -1.5); + _2_m_a1_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a1_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * a1 * lever * __l__s_a1_p_2_a_lever_p_2_r__p__l__s_1_t_5_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _4_m_a1_m_a2_p_2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (4 * a1 * lever * _a2_p_2 * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _4_m_a1_m_a2_p_2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_a1_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a1_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l_3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (_2_m_lever_m__l_3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _2_m_a1_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a1_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _4_m_a1_m_a2_p_2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + _a1_p_3_m_lever_m_sin_l_theta0_r_ = (lever * _a1_p_3 * _sin_l_theta0_r_); + __s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (-1 * a1 * _1_d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * __s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6); + _a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = (_a1_p_3_m_lever_m_sin_l_theta0_r_ + __s_a1_m_lever_p_3_m_sin_l_theta0_r_ + __s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_); + _2_m_lever_m__l_a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ * _sin_l_theta0_r_); + _4_m_a1_p_2_m_a2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (4 * a2 * lever * _a1_p_2 * _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ * _sin_l_theta0_r_); + _4_m_a1_p_2_m_a2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_lever_m__l_a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (_2_m_lever_m__l_a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _4_m_a1_p_2_m_a2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + _a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (a2 * _sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_); + _lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_ = (lever * __s_a1_p_2_m_a2_p_2_a_lever_p_4 * _sin_l_theta0_r_); + _1_d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = std::pow(_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_, -0.5); + __s_2_m_a1_m_a2_p_2 = (-2 * a1 * _a2_p_2); + _2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2 = (2 * a1 * _lever_p_2 * _cos_l_theta0_r__p_2); + __s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2 = (__s_2_m_a1_m_a2_p_2 + _2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2); + __l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = (0.5 * _a1_p_2_m_a2_p_2_s_lever_p_4 * __s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2); + _a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = (a1 * _a2_p_2 * __s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4); + __s_2_m_a2_p_2 = (-2 * _a2_p_2); + __s_4_m_a1_m_a2 = (-4 * a1 * a2); + __s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2 = (__s_2_m_a2_p_2 + _2_m_lever_p_2 + __s_4_m_a1_m_a2); + _lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2 = (0.5 * _lever_p_2 * _sin_l_theta0_r__p_2 * __s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2 * __s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2); + _a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = (__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 + _a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ + _lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2); + __l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (_1_d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _a1_m_a2_a_lever_p_2 * _a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2); + __s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r_ = (-2 * a1 * lever * _a2_p_2 * _a1_a_a2 * _sin_l_theta0_r_); + __s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ + _lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_ + __l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ + __s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r_); + _2_m_lever_m__l__s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d__l_a1_m_a2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * __s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + __l_a1_m_a2_a_lever_p_2_r__p__l__s_2_r_ = std::pow(_a1_m_a2_a_lever_p_2, -2); + __s_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (-2 * a2 * lever * __l_a1_m_a2_a_lever_p_2_r__p__l__s_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + _4_m_a1_m_a2_p_2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (4 * a1 * lever * _a2_p_2 * _1_d__l_a1_m_a2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + _4_m_a1_m_a2_p_2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l__s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (_2_m_lever_m__l__s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + __s_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _4_m_a1_m_a2_p_2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + _a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (a1 * _sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_); + __s_2_m_a1_p_2_m_a2 = (-2 * a2 * _a1_p_2); + _2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2 = (2 * a2 * _lever_p_2 * _cos_l_theta0_r__p_2); + __s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2 = (__s_2_m_a1_p_2_m_a2 + _2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2); + __l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = (0.5 * _a1_p_2_m_a2_p_2_s_lever_p_4 * __s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2); + _a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = (a2 * _a1_p_2 * __s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4); + __s_2_m_a1_p_2 = (-2 * _a1_p_2); + __s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2 = (__s_2_m_a1_p_2 + _2_m_lever_p_2 + __s_4_m_a1_m_a2); + _lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2 = (0.5 * _lever_p_2 * _sin_l_theta0_r__p_2 * __s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2 * __s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2); + _a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = (__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 + _a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ + _lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2); + __l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (_1_d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _a1_m_a2_a_lever_p_2 * _a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2); + __s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r_ = (-2 * a2 * lever * _a1_p_2 * _a1_a_a2 * _sin_l_theta0_r_); + __s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = (_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ + _lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_ + __l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ + __s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r_); + _2_m_lever_m__l__s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (2 * lever * _1_d__l_a1_m_a2_a_lever_p_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * __s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + __s_2_m_a1_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (-2 * a1 * lever * __l_a1_m_a2_a_lever_p_2_r__p__l__s_2_r_ * _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ * _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + _4_m_a1_p_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = (4 * a2 * lever * _a1_p_2 * _1_d__l_a1_m_a2_a_lever_p_2_r_ * __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ * _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ * _sin_l_theta0_r_); + _4_m_a1_p_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_2_m_a1_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l__s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = (_2_m_lever_m__l__s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + __s_2_m_a1_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ + _4_m_a1_p_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_); + + ex = _2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + ey = _2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + ez = _2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + exx = _1_s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_; + exy = __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_; + exz = __s_sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_; + eyx = __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_; + eyy = _1_s_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_; + eyz = __s_sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_; + ezx = _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_; + ezy = _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_; + ezz = __l_2_m_lever_p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__d__l_2_m_lever_p_2_r_; + jx1 = _4_m_a1_m_a2_p_2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_lever_m__l_a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + jx2 = _4_m_a1_p_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a2_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l_3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + jy1 = _4_m_a1_m_a2_p_2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_a1_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a1_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l_3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + jy2 = _4_m_a1_p_2_m_a2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_lever_m__l_a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + jz1 = _4_m_a1_m_a2_p_2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l__s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + jz2 = _4_m_a1_p_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_2_m_a1_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l__s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_; + jrx1 = _lever_p_2; + jrx2 = _lever_p_2; + jry1 = _lever_p_2; + jry2 = _lever_p_2; + jrz1 = _lever_p_2; + jrz2 = _lever_p_2; +} + +} diff --git a/VirtualRobot/Nodes/FourBar/Expressions.h b/VirtualRobot/Nodes/FourBar/Expressions.h new file mode 100644 index 0000000000000000000000000000000000000000..343951a9eaab780373bdb5c54fae82532e0a0947 --- /dev/null +++ b/VirtualRobot/Nodes/FourBar/Expressions.h @@ -0,0 +1,251 @@ +/* + * This file was generated automatically on 2022-06-09 10:41. + */ + +#pragma once + + +namespace VirtualRobot::four_bar +{ + +class Expressions +{ +public: + + void compute(double a1, double a2, double lever, double theta0); + + // Input arguments: + double a1 = 0; + double a2 = 0; + double lever = 0; + double theta0 = 0; + + // Results: + double ex = 0; + double ey = 0; + double ez = 0; + double exx = 0; + double exy = 0; + double exz = 0; + double eyx = 0; + double eyy = 0; + double eyz = 0; + double ezx = 0; + double ezy = 0; + double ezz = 0; + double jx1 = 0; + double jx2 = 0; + double jy1 = 0; + double jy2 = 0; + double jz1 = 0; + double jz2 = 0; + double jrx1 = 0; + double jrx2 = 0; + double jry1 = 0; + double jry2 = 0; + double jrz1 = 0; + double jrz2 = 0; + + // Intermediate expressions: + double _lever_p_2 = 0; + double _a2_p_2 = 0; + double __s_a2_p_2 = 0; + double __s_a2_p_2_a_lever_p_2 = 0; + double _1_d_sqrt_l__s_a2_p_2_a_lever_p_2_r_ = 0; + double _lever_p_4 = 0; + double _a1_p_2 = 0; + double __s_a1_p_2_m_a2_p_2 = 0; + double __s_a1_p_2_m_a2_p_2_a_lever_p_4 = 0; + double _1_d__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r_ = 0; + double _lever_p_5 = 0; + double _sin_l_theta0_r_ = 0; + double _lever_p_5_m_sin_l_theta0_r_ = 0; + double _lever_p_8 = 0; + double _lever_p_6 = 0; + double __s_a1_p_2_m_lever_p_6 = 0; + double _a1_p_4 = 0; + double _a2_p_4 = 0; + double __s_a1_p_4_m_a2_p_4 = 0; + double __s_a2_p_2_m_lever_p_6 = 0; + double _sin_l_theta0_r__p_2 = 0; + double __s_2_m_lever_p_8_m_sin_l_theta0_r__p_2 = 0; + double _a1_p_2_m_a2_p_4_m_lever_p_2 = 0; + double _a1_p_4_m_a2_p_2_m_lever_p_2 = 0; + double _2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double _a2_p_3 = 0; + double __s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double _a1_p_3 = 0; + double __s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double __s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2 = 0; + double __s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8 = 0; + double _sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double __s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _lever_p_3 = 0; + double __s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r_ = 0; + double __s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double _a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ = 0; + double _2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __s_a1_p_2 = 0; + double __s_a1_p_2_a_lever_p_2 = 0; + double _1_d_sqrt_l__s_a1_p_2_a_lever_p_2_r_ = 0; + double __s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double __s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r_ = 0; + double _a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r_ = 0; + double _2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _a1_m_a2 = 0; + double _a1_m_a2_a_lever_p_2 = 0; + double _1_d__l_a1_m_a2_a_lever_p_2_r_ = 0; + double __s_lever_p_4 = 0; + double _a1_p_2_m_a2_p_2 = 0; + double _a1_p_2_m_a2_p_2_s_lever_p_4 = 0; + double _cos_l_theta0_r_ = 0; + double _cos_l_theta0_r__p_2 = 0; + double __s_2_m_lever_p_4_m_cos_l_theta0_r__p_2 = 0; + double _a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2 = 0; + double _a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2 = 0; + double __s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4 = 0; + double __l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = 0; + double _a1_m_lever_p_2 = 0; + double _a2_m_lever_p_2 = 0; + double __s_a1_m_a2_p_2 = 0; + double __s_a1_p_2_m_a2 = 0; + double __s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2 = 0; + double __l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2 = 0; + double _lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2 = 0; + double _lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = 0; + double _sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double __l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double _a1_a_a2 = 0; + double _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_ = 0; + double _lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double _2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _1_d__l__s_a2_p_2_a_lever_p_2_r_ = 0; + double __l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p__l__s_2_r_ = 0; + double __l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2 = 0; + double __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _1_s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double __s_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _1_d_lever = 0; + double _4_m_lever_p_2_m_sin_l_theta0_r__p_2 = 0; + double _1_d__l__s_a1_p_2_a_lever_p_2_r_ = 0; + double __l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2 = 0; + double __s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double __s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r_ = 0; + double _1_d_sin_l_theta0_r_ = 0; + double __s_sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = 0; + double __s_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _1_s_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double __s_sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = 0; + double _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = 0; + double _sqrt_l_4_m_lever_p_2_m_sin_l_theta0_r__p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_m_sin_l_theta0_r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__d__l_lever_m_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__r_ = 0; + double _lever_p__l__s_2_r_ = 0; + double _2_m_lever_p_2 = 0; + double __s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double __s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _2_m_lever_p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double __l_2_m_lever_p_2_s_4_m_lever_p_2_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_4_m_lever_p_2_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__p_2_d__l__l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__r__d__l_2_m_lever_p_2_r_ = 0; + double _a2_p_3_m_lever_m_sin_l_theta0_r_ = 0; + double __s_a2_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double _1_d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double __s_a1_m_lever_p_6 = 0; + double __s_2_m_a1_p_3_m_a2_p_4 = 0; + double _a1_m_a2_p_4_m_lever_p_2 = 0; + double _a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double __s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a1_p_3_m_a2_p_2_m_lever_p_2 = 0; + double __s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double __s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double _3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2 = 0; + double __s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double __s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _2_m_lever_m__l_a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _4_m_a1_m_a2_p_2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_a1_m_a2_p_2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_lever_m__l_a2_p_3_m_lever_m_sin_l_theta0_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double __s_a1_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double __s_a2_m_lever_p_6 = 0; + double __s_2_m_a1_p_4_m_a2_p_3 = 0; + double _a1_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double _a1_p_4_m_a2_m_lever_p_2 = 0; + double __s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2 = 0; + double _2_m_a1_p_2_m_a2_p_3_m_lever_p_2 = 0; + double __s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double __s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2 = 0; + double _3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2 = 0; + double __s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6 = 0; + double __s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double __s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double _3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r_ = 0; + double _3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _2_m_lever_m__l_3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __l__s_a2_p_2_a_lever_p_2_r__p__l__s_1_t_5_r_ = 0; + double _2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a2_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _4_m_a1_p_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_a1_p_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_a2_m_lever_m__l_a1_m_a2_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a2_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l_3_m_a1_m_a2_p_2_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_2_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a2_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a2_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double __s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r_ = 0; + double _3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r_ = 0; + double _3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _2_m_lever_m__l_3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __l__s_a1_p_2_a_lever_p_2_r__p__l__s_1_t_5_r_ = 0; + double _2_m_a1_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a1_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _4_m_a1_m_a2_p_2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_a1_m_a2_p_2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_a1_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l__l__s_a1_p_2_a_lever_p_2_r__p_1_t_5_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l_3_m_a1_p_2_m_a2_m_lever_m_sin_l_theta0_r__s_2_m_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_3_m_a2_p_4_a_2_m_a1_p_3_m_a2_p_2_m_lever_p_2_a_3_m_a1_p_2_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_3_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_a2_p_4_m_lever_p_2_s_2_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_m_lever_p_6_s_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__s_a2_m_lever_p_3_m_sin_l_theta0_r__s_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _a1_p_3_m_lever_m_sin_l_theta0_r_ = 0; + double __s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r_ = 0; + double _2_m_lever_m__l_a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _4_m_a1_p_2_m_a2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_a1_p_2_m_a2_m_lever_m__l_a1_p_3_m_a2_m_lever_m_sin_l_theta0_r__s_a1_p_2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_a2_m_lever_p_3_m_sin_l_theta0_r__s_a1_m_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__a_lever_p_5_m_sin_l_theta0_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__a_2_m_lever_m__l_a1_p_3_m_lever_m_sin_l_theta0_r__s_a1_m_lever_p_3_m_sin_l_theta0_r__s_a1_m__l__s_2_m_a1_p_4_m_a2_p_3_a_a1_p_4_m_a2_m_lever_p_2_a_3_m_a1_p_3_m_a2_p_2_m_lever_p_2_m_sin_l_theta0_r__p_2_s_a1_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_a2_p_3_m_lever_p_2_s_2_m_a1_p_2_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_s_3_m_a1_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_m_lever_p_6_r__d_sqrt_l__s_a1_p_4_m_a2_p_4_a_a1_p_4_m_a2_p_2_m_lever_p_2_a_2_m_a1_p_3_m_a2_p_3_m_lever_p_2_m_sin_l_theta0_r__p_2_s_2_m_a1_p_3_m_a2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_a1_p_2_m_a2_p_4_m_lever_p_2_s_2_m_a1_p_2_m_a2_p_2_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a1_p_2_m_lever_p_6_s_2_m_a1_m_a2_p_3_m_lever_p_4_m_sin_l_theta0_r__p_2_a_2_m_a1_m_a2_m_lever_p_6_m_sin_l_theta0_r__p_2_a_2_m_a2_p_2_m_lever_p_6_m_sin_l_theta0_r__p_2_s_a2_p_2_m_lever_p_6_s_2_m_lever_p_8_m_sin_l_theta0_r__p_2_a_lever_p_8_r__r__m_sin_l_theta0_r__d__l_sqrt_l__s_a1_p_2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double _lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r_ = 0; + double _1_d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double __s_2_m_a1_m_a2_p_2 = 0; + double _2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2 = 0; + double __s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2 = 0; + double __l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = 0; + double _a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = 0; + double __s_2_m_a2_p_2 = 0; + double __s_4_m_a1_m_a2 = 0; + double __s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2 = 0; + double _lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2 = 0; + double _a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = 0; + double __l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double __s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r_ = 0; + double __s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double _2_m_lever_m__l__s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __l_a1_m_a2_a_lever_p_2_r__p__l__s_2_r_ = 0; + double __s_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _4_m_a1_m_a2_p_2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_a1_m_a2_p_2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l__s_2_m_a1_m_a2_p_2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a2_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_m_a2_p_2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_4_m_a1_m_a2_s_2_m_a2_p_2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_m_a2_p_2_a_2_m_a1_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double __s_2_m_a1_p_2_m_a2 = 0; + double _2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2 = 0; + double __s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2 = 0; + double __l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = 0; + double _a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r_ = 0; + double __s_2_m_a1_p_2 = 0; + double __s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2 = 0; + double _lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2 = 0; + double _a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2 = 0; + double __l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double __s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r_ = 0; + double __s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r_ = 0; + double _2_m_lever_m__l__s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double __s_2_m_a1_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + double _4_m_a1_p_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r_ = 0; + double _4_m_a1_p_2_m_a2_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__p_2_r__s_2_m_a1_m_lever_m__l_lever_m__l_a1_a_a2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__p_2_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r__a_2_m_lever_m__l__s_2_m_a1_p_2_m_a2_m_lever_m__l_a1_a_a2_r__m_sin_l_theta0_r__a_a1_m_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__a_lever_m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__m_sin_l_theta0_r__a__l_a1_m_a2_a_lever_p_2_r__m__l_a1_p_2_m_a2_m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__a_lever_p_2_m__l__s_2_m_a1_p_2_s_4_m_a1_m_a2_a_2_m_lever_p_2_r__m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__m_sin_l_theta0_r__p_2_d_2_a__l__s_2_m_a1_p_2_m_a2_a_2_m_a2_m_lever_p_2_m_cos_l_theta0_r__p_2_r__m__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__d_2_r__d_sqrt_l_lever_p_2_m__l__s_a1_p_2_m_a2_s_a1_m_a2_p_2_a_a1_m_lever_p_2_a_a2_m_lever_p_2_r__p_2_m_sin_l_theta0_r__p_2_a__l_a1_p_2_m_a2_p_2_s_lever_p_4_r__m__l__s_a1_p_2_m_a2_p_2_a_a1_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_a_a2_p_2_m_lever_p_2_m_cos_l_theta0_r__p_2_s_2_m_lever_p_4_m_cos_l_theta0_r__p_2_a_lever_p_4_r__r__r__m_sin_l_theta0_r__d__l__l_a1_m_a2_a_lever_p_2_r__m__l__s_a1_p_2_m_a2_p_2_a_lever_p_4_r__r_ = 0; + +}; + +} diff --git a/VirtualRobot/Nodes/FourBar/Joint.cpp b/VirtualRobot/Nodes/FourBar/Joint.cpp new file mode 100644 index 0000000000000000000000000000000000000000..bbc01c202580014bd07329b13b1c563a7e192d61 --- /dev/null +++ b/VirtualRobot/Nodes/FourBar/Joint.cpp @@ -0,0 +1,89 @@ +#include "Joint.h" + +#include <cmath> + +#include <Eigen/Core> +#include <Eigen/Geometry> + +#include <SimoxUtility/math/convert/deg_to_rad.h> +#include <SimoxUtility/math/pose/pose.h> + + +namespace VirtualRobot::four_bar +{ + + Joint::Joint(double theta0, const Dimensions& dimensions) : theta0(theta0), dims(dimensions) + { + } + + + // void Joint::computeFkOfPosition(double p1, double p2) + // { + // fk.compute(p1, p2, lever, theta0); + // } + + + // void Joint::computeFkOfPosition(const Eigen::Vector2d& p12) + // { + // computeFkOfPosition(p12(0), p12(1)); + // } + + + void + Joint::computeFkOfAngle(const double theta) + { + // computeFkOfPosition(angleToPosition(alpha12)); + // transformation.setIdentity(); + + // move from passive to active joint + const Eigen::Translation3d passive_T_active_base(Eigen::Vector3d::UnitX() * dims.shank); + + // apply rotation of this active joint + const Eigen::AngleAxisd active_base_T_eef{theta0 + theta, Eigen::Vector3d::UnitZ()}; + + transformation = passive_T_active_base * active_base_T_eef; + } + + + Eigen::Vector3d + Joint::getEndEffectorTranslation() const + { + return transformation.translation(); + // return Eigen::Vector3d{fk.ex, fk.ey, fk.ez}; + } + + + Eigen::Matrix3d + Joint::getEndEffectorRotation() const + { + return transformation.rotation(); + // r_wrist_to_base = np.array([[exx, eyx, ezx], [exy, eyy, ezy], [exz, eyz, ezz]]) + // Eigen::Matrix3d ori; + // ori << fk.exx, fk.eyx, fk.ezx, fk.exy, fk.eyy, fk.ezy, fk.exz, fk.eyz, fk.ezz; + // return ori; + } + + + Eigen::Matrix4d + Joint::getEndEffectorTransform() const + { + return transformation.matrix(); + } + + + Joint::Jacobian + Joint::getJacobian() const + { + // FIXME implement + Joint::Jacobian jacobian; + jacobian << fk.jx1, fk.jx2, fk.jy1, fk.jy2, fk.jz1, fk.jz2, fk.jrx1, fk.jrx2, fk.jry1, + fk.jry2, fk.jrz1, fk.jrz2; + return jacobian; + } + + // Eigen::Vector2d Joint::angleToPosition(const Eigen::Vector2d& alpha) const + // { + // return lever * Eigen::sin((alpha + Eigen::Vector2d::Constant(theta0)).array()); + // } + +} // namespace VirtualRobot::four_bar diff --git a/VirtualRobot/Nodes/FourBar/Joint.h b/VirtualRobot/Nodes/FourBar/Joint.h new file mode 100644 index 0000000000000000000000000000000000000000..56271ee299ded7f2bb50e50b5047ecb9ce1f674c --- /dev/null +++ b/VirtualRobot/Nodes/FourBar/Joint.h @@ -0,0 +1,100 @@ +#pragma once + +#include <cmath> + +#include <Eigen/Core> +#include <Eigen/Geometry> + +#include "Expressions.h" + + +namespace VirtualRobot::four_bar +{ + + // this class represents the four bar mechanisms; in particular the actuated joint + class Joint + { + public: + using Jacobian = Eigen::Matrix<double, 6, 1>; + + public: + struct Dimensions; + + Joint(double theta0, const Dimensions& dimensions); + + struct Dimensions + { + double shank = 280; + double p1 = 84.375; + double p2 = 270; + double p3 = 45; + + // C.15 + double + k1() const + { + return shank / p1; + } + + // C.16 + double + k2() const + { + return shank / p3; + } + + // C.17 + double + k3() const + { + constexpr auto squared = [](const double t){ return t * t; }; + + return (squared(shank) + squared(p1) + squared(p3) - squared(p2)) / (2 * p1 * p3); + } + }; + + double + psi(const double theta) + { + const double k1 = dims.k1(); + const double k2 = dims.k2(); + const double k3 = dims.k3(); + + const double cosTheta = std::cos(theta); + const double sinTheta = std::sin(theta); + + const double A = k1 * cosTheta + k2 + k3 + cosTheta; // C.34 + const double B = -2 * sinTheta; // C.35 + const double C = k1 * cosTheta - k2 + k3 - cosTheta; // C.36 + + const double psi = 2 * std::atan((-B + std::sqrt(B * B - 4 * A * C)) / (2 * A)); // C.39 + + return psi; + } + + // compute pose of actuated joint in passive joint frame + void computeFkOfAngle(double theta); + + + Eigen::Vector3d getEndEffectorTranslation() const; + Eigen::Matrix3d getEndEffectorRotation() const; + Eigen::Matrix4d getEndEffectorTransform() const; + Jacobian getJacobian() const; + + // Eigen::Vector2d angleToPosition(const Eigen::Vector2d& alpha) const; + + + public: + const double theta0; + const Dimensions dims; + + double limitLo = 0; + double limitHi = 0; + + + Expressions fk; + + Eigen::Isometry3d transformation = Eigen::Isometry3d::Identity(); + }; + +} // namespace VirtualRobot::four_bar diff --git a/VirtualRobot/Nodes/RobotNode.cpp b/VirtualRobot/Nodes/RobotNode.cpp index 2107a7b3d1de25b922ca77ce3296f05e1ef3b467..33dae5a5141a3c19c488bf0f6a7c8236a49e2998 100644 --- a/VirtualRobot/Nodes/RobotNode.cpp +++ b/VirtualRobot/Nodes/RobotNode.cpp @@ -662,6 +662,11 @@ namespace VirtualRobot { return false; } + + bool RobotNode::isFourBarJoint() const + { + return false; + } void RobotNode::setLimitless(bool limitless) { @@ -888,7 +893,7 @@ namespace VirtualRobot bool RobotNode::isJoint() const { - return isRotationalJoint() or isTranslationalJoint() or isHemisphereJoint(); + return isRotationalJoint() or isTranslationalJoint() or isHemisphereJoint() or isFourBarJoint(); } void RobotNode::setMaxTorque(float maxTo) diff --git a/VirtualRobot/Nodes/RobotNode.h b/VirtualRobot/Nodes/RobotNode.h index 9bd9cd44eecee77fa3e81356ddea146242578b15..454973471658e6eecc0698d000484b2e83b69dc8 100644 --- a/VirtualRobot/Nodes/RobotNode.h +++ b/VirtualRobot/Nodes/RobotNode.h @@ -95,7 +95,7 @@ namespace VirtualRobot The internal matrices and visualizations are updated accordingly. If you intend to update multiple joints, use \ref setJointValueNoUpdate(float) for faster access. */ - void setJointValue(float q); + virtual void setJointValue(float q); /*! All children and their children (and so on) are collected. @@ -228,6 +228,7 @@ namespace VirtualRobot virtual bool isTranslationalJoint() const; virtual bool isRotationalJoint() const; virtual bool isHemisphereJoint() const; + virtual bool isFourBarJoint() const; /** * @param limitless wheter this node has joint limits or not. diff --git a/VirtualRobot/Nodes/RobotNodeFourBar.cpp b/VirtualRobot/Nodes/RobotNodeFourBar.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d33363e916e4156ca3aea208a786df7ae47a6bb4 --- /dev/null +++ b/VirtualRobot/Nodes/RobotNodeFourBar.cpp @@ -0,0 +1,498 @@ +#include "RobotNodeFourBar.h" + +#include <algorithm> +#include <cmath> + +#include <Eigen/Geometry> +#include <Eigen/src/Geometry/AngleAxis.h> + +#include <SimoxUtility/math/pose/pose.h> +#include <SimoxUtility/meta/enum/EnumNames.hpp> + +#include "Nodes/FourBar/Joint.h" +#include "Nodes/Sensor.h" +#include "Robot.h" +#include "VirtualRobotException.h" + + +namespace VirtualRobot +{ + namespace four_bar + { + extern const simox::meta::EnumNames<RobotNodeFourBar::Role> RoleNames = { + {RobotNodeFourBar::Role::PASSIVE, "passive"}, + {RobotNodeFourBar::Role::ACTIVE, "active"}, + }; + + } // namespace four_bar + + + VirtualRobot::RobotNodeFourBar::RobotNodeFourBar() = default; + + RobotNodeFourBar::Role + RobotNodeFourBar::RoleFromString(const std::string& string) + { + return four_bar::RoleNames.from_name(string); + } + + RobotNodeFourBar::RobotNodeFourBar(RobotWeakPtr rob, + const std::string& name, + float jointLimitLo, + float jointLimitHi, + const Eigen::Matrix4f& preJointTransform, + const Eigen::Vector3f& axis, + VisualizationNodePtr visualization, + CollisionModelPtr collisionModel, + float jointValueOffset, + const SceneObject::Physics& physics, + CollisionCheckerPtr colChecker, + RobotNodeType type) : + RobotNode(rob, + name, + jointLimitLo, + jointLimitHi, + visualization, + collisionModel, + jointValueOffset, + physics, + colChecker, + type) + { + (void)axis; + + initialized = false; + optionalDHParameter.isSet = false; + localTransformation = preJointTransform; + checkValidRobotNodeType(); + } + + + RobotNodeFourBar::RobotNodeFourBar(RobotWeakPtr rob, + const std::string& name, + float jointLimitLo, + float jointLimitHi, + float a, + float d, + float alpha, + float theta, + VisualizationNodePtr visualization, + CollisionModelPtr collisionModel, + float jointValueOffset, + const SceneObject::Physics& physics, + CollisionCheckerPtr colChecker, + RobotNodeType type) : + RobotNode(rob, + name, + jointLimitLo, + jointLimitHi, + visualization, + collisionModel, + jointValueOffset, + physics, + colChecker, + type) + { + initialized = false; + optionalDHParameter.isSet = true; + optionalDHParameter.setAInMM(a); + optionalDHParameter.setDInMM(d); + optionalDHParameter.setAlphaRadian(alpha, true); + optionalDHParameter.setThetaRadian(theta, true); + + // compute DH transformation matrices + // Eigen::Matrix4f RotTheta = Eigen::Matrix4f::Identity(); + // RotTheta(0, 0) = cos(theta); + // RotTheta(0, 1) = -sin(theta); + // RotTheta(1, 0) = sin(theta); + // RotTheta(1, 1) = cos(theta); + // Eigen::Matrix4f TransD = Eigen::Matrix4f::Identity(); + // TransD(2, 3) = d; + // Eigen::Matrix4f TransA = Eigen::Matrix4f::Identity(); + // TransA(0, 3) = a; + // Eigen::Matrix4f RotAlpha = Eigen::Matrix4f::Identity(); + // RotAlpha(1, 1) = cos(alpha); + // RotAlpha(1, 2) = -sin(alpha); + // RotAlpha(2, 1) = sin(alpha); + // RotAlpha(2, 2) = cos(alpha); + + // localTransformation = RotTheta * TransD * TransA * RotAlpha; + localTransformation.setIdentity(); + checkValidRobotNodeType(); + } + + void + RobotNodeFourBar::setJointValueNoUpdate(float q) + { + std::cout << "RobotNodeFourBar: setting joint value no update " << q << std::endl; + + if (active) + { + // update the passive joint + const float psi = active->math.joint.psi(q); + active->passive->setJointValueNoUpdate(-psi); // FIXME make joint axis consistent + RobotNode::setJointValueNoUpdate(q); + } + else + { + RobotNode::setJointValueNoUpdate(q); + } + } + + + void + RobotNodeFourBar::setJointValue(float q) + { + // We must update the preceeding node (the passive node). + // This usually causes issues as the order to update the kinematic chain is strict. + std::cout << "RobotNodeFourBar: setting joint value " << getName() << " " << q << std::endl; + + std::cout << "RobotNodeFourBar: active? " << active.has_value() << std::endl; + + // update this node (without the global / internal pose!) + { + RobotPtr r = getRobot(); + VR_ASSERT(r); + WriteLockPtr lock = r->getWriteLock(); + setJointValueNoUpdate(q); + } + + if (active) + { + std::cout << "RobotNodeFourBar: triggering update of passive joint " << std::endl; + + // update all nodes including this one + active->passive->updatePose(true); + } + } + + + RobotNodeFourBar::~RobotNodeFourBar() = default; + + + void + RobotNodeFourBar::setXmlInfo(const XmlInfo& info) + { + this->xmlInfo = info; + + VR_ASSERT(second.has_value()); + switch (info.role) + { + case Role::PASSIVE: + std::cout << "Role: passive" << std::endl; + first.emplace(First{}); + // first->math.joint.setConstants(0, info.theta0); + break; + + case Role::ACTIVE: + std::cout << "Role: active" << std::endl; + active.emplace( + Second{.passive = nullptr, + .math = JointMath{.joint = four_bar::Joint{jointValueOffset, + info.dimensions.value()}}}); + break; + } + } + + + bool + RobotNodeFourBar::initialize(SceneObjectPtr parent, const std::vector<SceneObjectPtr>& children) + { + VR_ASSERT_MESSAGE(first.has_value() xor second.has_value(), + std::stringstream() << first.has_value() << " / " << second.has_value()); + + // The second node needs to store a reference to the first node. + // Whenever the joint value has changed, the passive joint will be updated. + if (active) + { + std::cout << "Initializing active four bar joint" << std::endl; + + VR_ASSERT_MESSAGE(not second->first, "Second must not be initialized yet."); + + VirtualRobot::SceneObjectPtr currentParent = parent; + + while (currentParent != nullptr) + { + auto* firstNode = dynamic_cast<RobotNodeFourBar*>(currentParent.get()); + + // TODO traverse all nodes until the passive four bar node is reached. + // TODO then, keep a list of all nodes that have to be updated if the passive node is updated + // => all child nodes except this one. It is important to not trigger an update of this node as it would + // result in infinite recursion. + + // RobotNodeFourBar* secondNode = this; + + // if (not(firstNode and firstNode->first)) + // { + // std::stringstream ss; + // ss << "The parent of a four_bar joint with role '" + // << four_bar::RoleNames.to_name(Role::ACTIVE) << "' " + // << "must be a four_bar joint with role '" + // << four_bar::RoleNames.to_name(Role::PASSIVE) << "' "; + // THROW_VR_EXCEPTION(ss.str()); + // } + + if(firstNode == nullptr) + { + currentParent = currentParent->getParent(); + std::cout << "Parent does not match (yet)."; + continue; + } + + std::cout << "Parent matches."; + + // Save pointer to firstNode + active->passive = firstNode; + + // initialize the passive node + const float psi = active->math.joint.psi(getJointValue()); + active->passive->setJointValueNoUpdate(-psi); + + // Set up robot node parameters. + { + // const four_bar::Joint& joint = active->math.joint; + + // firstNode->jointLimitLo = joint.limitLo; + // secondNode->jointLimitLo = joint.limitLo; + + // firstNode->jointLimitHi = joint.limitHi; + // secondNode->jointLimitHi = joint.limitHi; + } + + break; + } + } + + return RobotNode::initialize(parent, children); + } + + + void + RobotNodeFourBar::JointMath::update(const float theta) + { + // if (actuators != this->actuators) + // { + joint.computeFkOfAngle(theta); + // } + } + + + void + RobotNodeFourBar::updateTransformationMatrices(const Eigen::Matrix4f& parentPose) + { + VR_ASSERT_MESSAGE(first.has_value() xor second.has_value(), + std::stringstream() << first.has_value() << " / " << second.has_value()); + + std::cout << "Updating RobotNodeFourBar::updateTransformationMatrices" << std::endl; + + Eigen::Isometry3f tmp = Eigen::Isometry3f::Identity(); + + const auto jV = this->getJointValue(); + + if (active) + { + std::cout << "active: joint value " << jV << std::endl; + + active->math.update(jV); + tmp = active->math.joint.getEndEffectorTransform().cast<float>(); + } + else // passive + { + std::cout << "passive: joint value " << jV << std::endl; + + tmp.linear() = + Eigen::AngleAxisf(jV + jointValueOffset, Eigen::Vector3f::UnitZ()).toRotationMatrix(); + } + + + std::cout << "local transformation: " << getName() << tmp.matrix() << std::endl; + globalPose = parentPose * localTransformation * tmp.matrix(); + + + // if (first) + // { + // globalPose = parentPose * localTransformation; + // } + // else if (active) + // { + // VR_ASSERT_MESSAGE(second->first, "First node must be known to second node."); + + // JointMath& math = active->math(); + // Eigen::Vector2f actuators(active->passive->getJointValue(), this->getJointValue()); + + // math.update(actuators); + + // Eigen::Vector3d translation = math.joint.getEndEffectorTranslation(); + // const Eigen::Matrix3d rotation = math.joint.getEndEffectorRotation(); + // const Eigen::Matrix4d transform = simox::math::pose(translation, rotation); + + // // Update Second + // { + // this->globalPose = parentPose * localTransformation * transform.cast<float>(); + + // Eigen::IOFormat iof(5, 0, " ", "\n", " [", "]"); + // std::cout + // << __FUNCTION__ << "() of second actuator with " + // << "\n lever = " << math.joint.lever << "\n theta0 = " << math.joint.theta0 + // << "\n radius = " << math.joint.radius << "\n joint value = " << jointValue + // << "\n actuator (angle) = \n" + // << actuators.transpose().format(iof) << "\n actuator (pos) = \n" + // << math.joint.angleToPosition(actuators.cast<double>()).transpose().format(iof) + // << "\n local transform = \n" + // << localTransformation.format(iof) << "\n joint transform = \n" + // << transform.format(iof) << std::endl; + // } + // } + } + + + void + RobotNodeFourBar::print(bool printChildren, bool printDecoration) const + { + ReadLockPtr lock = getRobot()->getReadLock(); + VR_ASSERT_MESSAGE(first.has_value() xor second.has_value(), + std::stringstream() << first.has_value() << " / " << second.has_value()); + + if (printDecoration) + { + std::cout << "******** RobotNodeFourBar ********" << std::endl; + } + + RobotNode::print(false, false); + + if (first) + { + std::cout << "* four_bar joint first node"; + } + else if (active) + { + std::cout << "* four_bar joint second node"; + std::cout << "* Transform: \n" + << active->math.joint.getEndEffectorTransform() << std::endl; + } + + if (printDecoration) + { + std::cout << "******** End RobotNodeFourBar ********" << std::endl; + } + + if (printChildren) + { + for (const SceneObjectPtr& child : this->getChildren()) + { + child->print(true, true); + } + } + } + + + RobotNodePtr + RobotNodeFourBar::_clone(const RobotPtr newRobot, + const VisualizationNodePtr visualizationModel, + const CollisionModelPtr collisionModel, + CollisionCheckerPtr colChecker, + float scaling) + { + ReadLockPtr lock = getRobot()->getReadLock(); + Physics physics = this->physics.scale(scaling); + + RobotNodeFourBarPtr result; + if (optionalDHParameter.isSet) + { + result.reset(new RobotNodeFourBar(newRobot, + name, + jointLimitLo, + jointLimitHi, + optionalDHParameter.aMM() * scaling, + optionalDHParameter.dMM() * scaling, + optionalDHParameter.alphaRadian(), + optionalDHParameter.thetaRadian(), + visualizationModel, + collisionModel, + jointValueOffset, + physics, + colChecker, + nodeType)); + } + else + { + Eigen::Matrix4f localTransform = getLocalTransformation(); + simox::math::position(localTransform) *= scaling; + result.reset(new RobotNodeFourBar(newRobot, + name, + jointLimitLo, + jointLimitHi, + localTransform, + Eigen::Vector3f::Zero(), + visualizationModel, + collisionModel, + jointValueOffset, + physics, + colChecker, + nodeType)); + } + + if(xmlInfo) + { + result->setXmlInfo(xmlInfo.value()); + } + + return result; + } + + + bool + RobotNodeFourBar::isFourBarJoint() const + { + return true; + } + + + void + RobotNodeFourBar::checkValidRobotNodeType() + { + RobotNode::checkValidRobotNodeType(); + THROW_VR_EXCEPTION_IF(nodeType == Body || nodeType == Transform, + "RobotNodeFourBar must be a JointNode or a GenericNode"); + } + + + std::string + RobotNodeFourBar::_toXML(const std::string& /*modelPath*/) + { + VR_ASSERT_MESSAGE(first.has_value() xor second.has_value(), + std::stringstream() << first.has_value() << " / " << second.has_value()); + + if (first) + { + // TODO + return ""; + } + else + { + JointMath& math = active->math; + + // FIXME implement + + std::stringstream ss; + ss << "\t\t<Joint type='four_bar'>" << std::endl; + ss << "\t\t\t<four_bar theta0='" << math.joint.theta0 << "' />" << std::endl; + ss << "\t\t\t<limits lo='" << jointLimitLo << "' hi='" << jointLimitHi + << "' units='radian'/>" << std::endl; + ss << "\t\t\t<MaxAcceleration value='" << maxAcceleration << "'/>" << std::endl; + ss << "\t\t\t<MaxVelocity value='" << maxVelocity << "'/>" << std::endl; + ss << "\t\t\t<MaxTorque value='" << maxTorque << "'/>" << std::endl; + std::map<std::string, float>::iterator propIt = propagatedJointValues.begin(); + + while (propIt != propagatedJointValues.end()) + { + ss << "\t\t\t<PropagateJointValue name='" << propIt->first << "' factor='" + << propIt->second << "'/>" << std::endl; + propIt++; + } + + ss << "\t\t</Joint>" << std::endl; + return ss.str(); + } + } + +} // namespace VirtualRobot diff --git a/VirtualRobot/Nodes/RobotNodeFourBar.h b/VirtualRobot/Nodes/RobotNodeFourBar.h new file mode 100644 index 0000000000000000000000000000000000000000..23879ae9a783ec375750ddc882c3e41af0f4756c --- /dev/null +++ b/VirtualRobot/Nodes/RobotNodeFourBar.h @@ -0,0 +1,180 @@ +/** +* This file is part of Simox. +* +* Simox is free software; you can redistribute it and/or modify +* it under the terms of the GNU Lesser General Public License as +* published by the Free Software Foundation; either version 2 of +* the License, or (at your option) any later version. +* +* Simox is distributed in the hope that it will be useful, but +* WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU Lesser General Public License for more details. +* +* You should have received a copy of the GNU Lesser General Public License +* along with this program. If not, see <http://www.gnu.org/licenses/>. +* +* @package VirtualRobot +* @author Fabian Reister +* @copyright 2023 Fabian Reister +* GNU Lesser General Public License +*/ +#pragma once + +#include <optional> +#include <string> +#include <vector> + +#include <Eigen/Core> + +#include "../VirtualRobot.h" +#include "Nodes/FourBar/Joint.h" +#include "RobotNode.h" + + +namespace VirtualRobot +{ + + // FIXME split into two classes FourBarActive and FourBarPassive + + using RobotNodeFourBarPtr = std::shared_ptr<class RobotNodeFourBar>; + + class VIRTUAL_ROBOT_IMPORT_EXPORT RobotNodeFourBar : public RobotNode + { + public: + enum class Role + { + PASSIVE, + ACTIVE, + }; + static Role RoleFromString(const std::string& string); + + struct XmlInfo + { + Role role; + + // Only set for first: + double theta0 = -1; + // double lever = -1; + + std::optional<four_bar::Joint::Dimensions> dimensions; + }; + + friend class RobotFactory; + + EIGEN_MAKE_ALIGNED_OPERATOR_NEW + + + RobotNodeFourBar( + RobotWeakPtr rob, ///< The robot + const std::string& name, ///< The name + float jointLimitLo, ///< lower joint limit + float jointLimitHi, ///< upper joint limit + const Eigen::Matrix4f& + preJointTransform, ///< This transformation is applied before the translation of the joint is done + const Eigen::Vector3f& axis, ///< The rotation axis (in local joint coord system) + VisualizationNodePtr visualization = nullptr, ///< A visualization model + CollisionModelPtr collisionModel = nullptr, ///< A collision model + float jointValueOffset = + 0.0f, ///< An offset that is internally added to the joint value + const SceneObject::Physics& p = {}, ///< physics information + CollisionCheckerPtr colChecker = + nullptr, ///< A collision checker instance (if not set, the global col checker is used) + RobotNodeType type = Generic); + + RobotNodeFourBar( + RobotWeakPtr rob, ///< The robot + const std::string& name, ///< The name + float jointLimitLo, ///< lower joint limit + float jointLimitHi, ///< upper joint limit + float a, ///< dh paramters + float d, ///< dh paramters + float alpha, ///< dh paramters + float theta, ///< dh paramters + VisualizationNodePtr visualization = nullptr, ///< A visualization model + CollisionModelPtr collisionModel = nullptr, ///< A collision model + float jointValueOffset = + 0.0f, ///< An offset that is internally added to the joint value + const SceneObject::Physics& p = {}, ///< physics information + CollisionCheckerPtr colChecker = + {}, ///< A collision checker instance (if not set, the global col checker is used) + RobotNodeType type = Generic); + + void setJointValueNoUpdate(float q) override; + void setJointValue(float q) override; + + public: + ~RobotNodeFourBar() override; + + + void setXmlInfo(const XmlInfo& info); + + bool initialize(SceneObjectPtr parent = nullptr, + const std::vector<SceneObjectPtr>& children = {}) override; + + /// Print status information. + void print(bool printChildren = false, bool printDecoration = true) const override; + + bool isFourBarJoint() const override; + + + protected: + RobotNodeFourBar(); + + /// Derived classes add custom XML tags here + std::string _toXML(const std::string& modelPath) override; + + /// Checks if nodeType constraints are fulfilled. Otherwise an exception is thrown. + /// Called on initialization. + void checkValidRobotNodeType() override; + + void updateTransformationMatrices(const Eigen::Matrix4f& parentPose) override; + + RobotNodePtr _clone(const RobotPtr newRobot, + const VisualizationNodePtr visualizationModel, + const CollisionModelPtr collisionModel, + CollisionCheckerPtr colChecker, + float scaling) override; + + + protected: + struct JointMath + { + /// The actuator values that were used to compute the joint math. + // Eigen::Vector2f actuators = Eigen::Vector2f::Constant(std::numeric_limits<float>::min()); + /// The joint math. + four_bar::Joint joint; + + void update(float theta); + }; + + struct First + { + // JointMath math; + }; + std::optional<First> first; + + struct Second + { + /// The first actuator node. + RobotNodeFourBar* passive = nullptr; + + JointMath math; + + // JointMath& math() + // { + // return passive->first->math; + // } + // const JointMath& math() const + // { + // return passive->first->math; + // } + }; + std::optional<Second> active; + + + + std::optional<XmlInfo> xmlInfo; + }; + +} // namespace VirtualRobot diff --git a/VirtualRobot/Nodes/RobotNodeFourBarFactory.cpp b/VirtualRobot/Nodes/RobotNodeFourBarFactory.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ee9bff05cdf5c19512b9faf19f1eac8b36209895 --- /dev/null +++ b/VirtualRobot/Nodes/RobotNodeFourBarFactory.cpp @@ -0,0 +1,102 @@ +/** +* @package VirtualRobot +* @author Fabian Reister +* @copyright 2023 Fabian Reister +*/ + +#include "RobotNodeFourBarFactory.h" + +#include "../CollisionDetection/CollisionModel.h" +#include "RobotNode.h" +#include "RobotNodeFourBar.h" + + +namespace VirtualRobot +{ + + RobotNodeFourBarFactory::RobotNodeFourBarFactory() = default; + + + RobotNodeFourBarFactory::~RobotNodeFourBarFactory() = default; + + + RobotNodePtr + RobotNodeFourBarFactory::createRobotNode(RobotPtr robot, + const std::string& nodeName, + VisualizationNodePtr visualizationModel, + CollisionModelPtr collisionModel, + float limitLow, + float limitHigh, + float jointValueOffset, + const Eigen::Matrix4f& preJointTransform, + const Eigen::Vector3f& axis, + const Eigen::Vector3f& /*translationDirection*/, + const SceneObject::Physics& physics, + RobotNode::RobotNodeType rntype) const + { + std::cout << "CREATE NEW FOUR BAR JOINT" << std::endl; + return std::make_shared<RobotNodeFourBar>( + robot, + nodeName, + limitLow, + limitHigh, + preJointTransform, + axis, + visualizationModel, + collisionModel, + jointValueOffset, + physics, + (collisionModel ? collisionModel->getCollisionChecker() : CollisionCheckerPtr()), + rntype); + } + + + RobotNodePtr + RobotNodeFourBarFactory::createRobotNodeDH(RobotPtr robot, + const std::string& nodeName, + VisualizationNodePtr visualizationModel, + CollisionModelPtr collisionModel, + float limitLow, + float limitHigh, + float jointValueOffset, + const DHParameter& dhParameters, + const SceneObject::Physics& physics, + RobotNode::RobotNodeType rntype) const + { + std::cout << "CREATE NEW FOUR BAR JOINT DH" << std::endl; + return std::make_shared<RobotNodeFourBar>(robot, + nodeName, + limitLow, + limitHigh, + dhParameters.aMM(), + dhParameters.dMM(), + dhParameters.alphaRadian(), + dhParameters.thetaRadian(), + visualizationModel, + collisionModel, + jointValueOffset, + physics, + CollisionCheckerPtr(), + rntype); + } + + + RobotNodeFactory::SubClassRegistry + RobotNodeFourBarFactory::registry(RobotNodeFourBarFactory::getName(), + &RobotNodeFourBarFactory::createInstance); + + + std::string + RobotNodeFourBarFactory::getName() + { + return "four_bar"; + } + + + std::shared_ptr<RobotNodeFactory> + RobotNodeFourBarFactory::createInstance(void*) + { + return std::make_shared<RobotNodeFourBarFactory>(); + } + +} // namespace VirtualRobot diff --git a/VirtualRobot/Nodes/RobotNodeFourBarFactory.h b/VirtualRobot/Nodes/RobotNodeFourBarFactory.h new file mode 100644 index 0000000000000000000000000000000000000000..02a210d073b3ed5ec86c4151b3abf682b8020191 --- /dev/null +++ b/VirtualRobot/Nodes/RobotNodeFourBarFactory.h @@ -0,0 +1,84 @@ +/** +* This file is part of Simox. +* +* Simox is free software; you can redistribute it and/or modify +* it under the terms of the GNU Lesser General Public License as +* published by the Free Software Foundation; either version 2 of +* the License, or (at your option) any later version. +* +* Simox is distributed in the hope that it will be useful, but +* WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU Lesser General Public License for more details. +* +* You should have received a copy of the GNU Lesser General Public License +* along with this program. If not, see <http://www.gnu.org/licenses/>. +* +* @package VirtualRobot +* @author Fabian Reister +* @copyright 2023 Fabian Reister +* GNU Lesser General Public License +*/ +#pragma once + +#include "../SceneObject.h" +#include "../VirtualRobot.h" +#include "RobotNodeFactory.h" + + +namespace VirtualRobot +{ + class RobotNode; + + class VIRTUAL_ROBOT_IMPORT_EXPORT RobotNodeFourBarFactory : public RobotNodeFactory + { + public: + RobotNodeFourBarFactory(); + ~RobotNodeFourBarFactory() override; + + /** + * Create a VirtualRobot::RobotNodeFourBar. + * + * \return instance of VirtualRobot::RobotNodeFourBar. + */ + RobotNodePtr + createRobotNode(RobotPtr robot, + const std::string& nodeName, + VisualizationNodePtr visualizationModel, + CollisionModelPtr collisionModel, + float limitLow, + float limitHigh, + float jointValueOffset, + const Eigen::Matrix4f& preJointTransform, + const Eigen::Vector3f& axis, + const Eigen::Vector3f& translationDirection, + const SceneObject::Physics& p = SceneObject::Physics(), + RobotNode::RobotNodeType rntype = RobotNode::Generic) const override; + + /** + * Create a VirtualRobot::RobotNodeFourBar from DH parameters. + * + * \return instance of VirtualRobot::RobotNodeFourBar. + */ + RobotNodePtr + createRobotNodeDH(RobotPtr robot, + const std::string& nodeName, + VisualizationNodePtr visualizationModel, + CollisionModelPtr collisionModel, + float limitLow, + float limitHigh, + float jointValueOffset, + const DHParameter& dhParameters, + const SceneObject::Physics& p = SceneObject::Physics(), + RobotNode::RobotNodeType rntype = RobotNode::Generic) const override; + + // AbstractFactoryMethod + public: + static std::string getName(); + static std::shared_ptr<RobotNodeFactory> createInstance(void*); + + private: + static SubClassRegistry registry; + }; + +} // namespace VirtualRobot diff --git a/VirtualRobot/Nodes/RobotNodeHemisphere.h b/VirtualRobot/Nodes/RobotNodeHemisphere.h index 343a20b86d913cb5cea392912e44b5829aa50d25..91e32bd11ac6ccc7c90461ce9dacd19860746e06 100644 --- a/VirtualRobot/Nodes/RobotNodeHemisphere.h +++ b/VirtualRobot/Nodes/RobotNodeHemisphere.h @@ -140,13 +140,12 @@ namespace VirtualRobot ) override; RobotNodePtr - _clone( - const RobotPtr newRobot, - const VisualizationNodePtr visualizationModel, - const CollisionModelPtr collisionModel, - CollisionCheckerPtr colChecker, - float scaling - ) override; + _clone(const RobotPtr newRobot, + const VisualizationNodePtr visualizationModel, + const CollisionModelPtr collisionModel, + CollisionCheckerPtr colChecker, + float scaling + ) override; public: @@ -186,4 +185,3 @@ namespace VirtualRobot }; } // namespace VirtualRobot - diff --git a/VirtualRobot/Robot.cpp b/VirtualRobot/Robot.cpp index 2945832a5f56d06054004234315f14eb776e6804..ea1b6d6e698d919d9b0d8c1de7941b063238a20c 100644 --- a/VirtualRobot/Robot.cpp +++ b/VirtualRobot/Robot.cpp @@ -960,7 +960,7 @@ namespace VirtualRobot for (const auto& rn : this->getRobotNodes()) { - if (rn->isTranslationalJoint() || rn->isRotationalJoint()) + if (rn->isJoint()) { r->setConfig(rn, rn->getJointValue()); } @@ -1119,6 +1119,7 @@ namespace VirtualRobot for (size_t i = 0; i < rn.size(); i++) { + VR_INFO << rn[i]->getName() << ": " << jointValues[i]; rn[i]->setJointValueNoUpdate(jointValues[i]); } diff --git a/VirtualRobot/XML/RobotIO.cpp b/VirtualRobot/XML/RobotIO.cpp index 6b5808efc0744a4f3cb575a71c5901a2cfc3957e..e49fb3e89337a0ce30b5e182a388eb007551ffca 100644 --- a/VirtualRobot/XML/RobotIO.cpp +++ b/VirtualRobot/XML/RobotIO.cpp @@ -16,11 +16,12 @@ #include "../Visualization/TriMeshModel.h" #include "../RobotConfig.h" #include "../RuntimeEnvironment.h" +#include "Nodes/RobotNodeFourBar.h" #include "VirtualRobot.h" #include "rapidxml.hpp" #include "mujoco/RobotMjcf.h" #include <VirtualRobot/Import/URDF/SimoxURDFFactory.h> - +#include <VirtualRobot/Nodes/FourBar/Joint.h> #include <SimoxUtility/xml/rapidxml/rapidxml_print.hpp> #include <SimoxUtility/filesystem/remove_trailing_separator.h> #include <SimoxUtility/math/convert/deg_to_rad.h> @@ -251,6 +252,7 @@ namespace VirtualRobot Eigen::Vector3f scaleVisuFactor = Eigen::Vector3f::Zero(); std::optional<RobotNodeHemisphere::XmlInfo> hemisphere; + std::optional<RobotNodeFourBar::XmlInfo> fourBarXmlInfo; while (node) { @@ -473,6 +475,40 @@ namespace VirtualRobot break; } } + else if (nodeName == "four_bar") + { + fourBarXmlInfo.emplace(); + + std::string roleString = processStringAttribute("role", node, true); + roleString = simox::alg::to_lower(roleString); + try + { + fourBarXmlInfo->role = RobotNodeFourBar::RoleFromString(roleString); + } + catch (const std::out_of_range& e) + { + THROW_VR_EXCEPTION("Invalid role in four_bar joint: " << e.what()) + } + + const rapidxml::xml_node<>* dimensionsNode = node->first_node("dimensions", 0, false); + + if(fourBarXmlInfo->role == RobotNodeFourBar::Role::ACTIVE) + { + if(dimensionsNode == nullptr) + { + THROW_VR_EXCEPTION("Missing <dimensions> node for four_bar joint."); + } + + fourBarXmlInfo->dimensions = four_bar::Joint::Dimensions + { + .shank = getFloatByAttributeName(dimensionsNode, "shank"), + .p1 = getFloatByAttributeName(dimensionsNode, "p1"), + .p2 = getFloatByAttributeName(dimensionsNode, "p2"), + .p3 = getFloatByAttributeName(dimensionsNode, "p3") + }; + } + + } else { THROW_VR_EXCEPTION("XML definition <" << nodeName << "> not supported in <Joint> tag of RobotNode <" << robotNodeName << ">." << endl); @@ -587,6 +623,12 @@ namespace VirtualRobot node->setXmlInfo(hemisphere.value()); } + if(robotNode->isFourBarJoint() and fourBarXmlInfo.has_value()) + { + auto node = std::dynamic_pointer_cast<RobotNodeFourBar>(robotNode); + node->setXmlInfo(fourBarXmlInfo.value()); + } + if (scaleVisu) { RobotNodePrismaticPtr rnPM = std::dynamic_pointer_cast<RobotNodePrismatic>(robotNode); diff --git a/VirtualRobot/examples/RobotViewer/showRobotWindow.cpp b/VirtualRobot/examples/RobotViewer/showRobotWindow.cpp index 2326f0b53e784773254c4d3fae3d16dda58bd9dc..b3128f36b46069c2889b720c12a755b949d6a461 100644 --- a/VirtualRobot/examples/RobotViewer/showRobotWindow.cpp +++ b/VirtualRobot/examples/RobotViewer/showRobotWindow.cpp @@ -615,6 +615,8 @@ void showRobotWindow::jointValueChanged(int pos) + static_cast<float>(pos) / 1000.0f * (currentRobotNodes[nr]->getJointLimitHi() - currentRobotNodes[nr]->getJointLimitLo()); + + std::cout << "Setting joint value " << fPos << " for joint " << currentRobotNodes[nr]->getName() << std::endl; robot->setJointValue(currentRobotNodes[nr], fPos); UI.lcdNumberJointValue->display(static_cast<double>(fPos)); @@ -816,8 +818,8 @@ void showRobotWindow::updatRobotInfo() UI.checkBoxFullModel->setChecked(true); UI.checkBoxPhysicsCoM->setChecked(false); UI.checkBoxPhysicsInertia->setChecked(false); - UI.checkBoxRobotCoordSystems->setChecked(false); - UI.checkBoxShowCoordSystem->setChecked(false); + UI.checkBoxRobotCoordSystems->setChecked(true); + UI.checkBoxShowCoordSystem->setChecked(true); UI.checkBoxStructure->setChecked(false); // get nodes @@ -874,6 +876,8 @@ void showRobotWindow::robotStructure() } structureEnabled = UI.checkBoxStructure->checkState() == Qt::Checked; + structureEnabled = true; + robot->showStructure(structureEnabled); // rebuild visualization rebuildVisualization(); @@ -887,6 +891,7 @@ void showRobotWindow::robotCoordSystems() } bool robotAllCoordsEnabled = UI.checkBoxRobotCoordSystems->checkState() == Qt::Checked; + robotAllCoordsEnabled = true; robot->showCoordinateSystems(robotAllCoordsEnabled); // rebuild visualization rebuildVisualization(); diff --git a/python/four_bar_mechanism/equations.ipynb b/python/four_bar_mechanism/equations.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..5cc71b36d64d86bc9d2419765ef83aace4cc37f5 --- /dev/null +++ b/python/four_bar_mechanism/equations.ipynb @@ -0,0 +1,502 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Jacobian of Four-Bar Mechanism \n", + "\n", + "The knee joint is actuated but the ankle joint is passive. \n", + "\n", + "## Todo's\n", + "\n", + " - consider $\\theta_0$" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "import sympy as sp\n", + "sp.init_printing(use_latex='mathjax')\n", + "\n", + "from sympy import symbols, sin, cos, sqrt, asin, atan\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "# Actuation (knee)\n", + "theta = symbols('theta')\n", + "\n", + "# Passive joint (ankle) \n", + "psi = symbols('psi')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Constants defined by geometry.\n", + "theta0 = symbols('theta0')\n", + "\n", + "shank, p1, p2, p3 = symbols('shank p1 p2 p3')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "# Manually specified structure of equations. We first introduce variables based on the kinematic structure only.\n", + "# These can easily be precomputed in code. Here, they are just mentioned as a reference.\n", + "\n", + "k1 = shank / p1\n", + "k2 = shank / p3\n", + "k3 = (shank**2 + p1**2 + p3**2 - p2**2 ) / (2 * p1 * p3)\n", + "\n", + "\n", + "# directly use these variables\n", + "k1, k2, k3 = symbols('k1 k2 k3')\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Relationship between ankle ($\\psi$) and knee ($\\theta$)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# some helpers\n", + "cT = cos(theta)\n", + "sT = sin(theta)\n", + "\n", + "\n", + "A = k1 * cT + k2 + k3 + cT # C.34\n", + "B = -2*sT # C.35\n", + "C = k1 * cT - k2 + k3 - cT # C.36\n", + "\n", + "# ankle\n", + "psi = 2 * atan((-B + sqrt(B * B - 4 * A * C)) / (2 * A)) # C.39\n", + "\n", + "psi = sp.simplify(psi)\n", + "\n", + "psi_of_theta = psi\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle 2 \\operatorname{atan}{\\left(\\frac{\\sqrt{- k_{1}^{2} \\cos^{2}{\\left(\\theta \\right)} - 2 k_{1} k_{3} \\cos{\\left(\\theta \\right)} + k_{2}^{2} + 2 k_{2} \\cos{\\left(\\theta \\right)} - k_{3}^{2} + 1} + \\sin{\\left(\\theta \\right)}}{k_{1} \\cos{\\left(\\theta \\right)} + k_{2} + k_{3} + \\cos{\\left(\\theta \\right)}} \\right)}$" + ], + "text/plain": [ + " ⎛ ______________________________________________________________ \n", + " ⎜ ╱ 2 2 2 2 \n", + " ⎜╲╱ - kâ‚ â‹…cos (θ) - 2â‹…kâ‚â‹…k₃⋅cos(θ) + kâ‚‚ + 2â‹…kâ‚‚â‹…cos(θ) - k₃ + 1 + sin\n", + "2â‹…atan⎜───────────────────────────────────────────────────────────────────────\n", + " ⎠kâ‚â‹…cos(θ) + kâ‚‚ + k₃ + cos(θ) \n", + "\n", + " ⎞\n", + " ⎟\n", + "(θ)⎟\n", + "───⎟\n", + " ⎠" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psi" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Derivatives" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\frac{2 \\left(\\frac{\\left(k_{1} \\sin{\\left(\\theta \\right)} + \\sin{\\left(\\theta \\right)}\\right) \\left(\\sqrt{- k_{1}^{2} \\cos^{2}{\\left(\\theta \\right)} - 2 k_{1} k_{3} \\cos{\\left(\\theta \\right)} + k_{2}^{2} + 2 k_{2} \\cos{\\left(\\theta \\right)} - k_{3}^{2} + 1} + \\sin{\\left(\\theta \\right)}\\right)}{\\left(k_{1} \\cos{\\left(\\theta \\right)} + k_{2} + k_{3} + \\cos{\\left(\\theta \\right)}\\right)^{2}} + \\frac{\\frac{k_{1}^{2} \\sin{\\left(\\theta \\right)} \\cos{\\left(\\theta \\right)} + k_{1} k_{3} \\sin{\\left(\\theta \\right)} - k_{2} \\sin{\\left(\\theta \\right)}}{\\sqrt{- k_{1}^{2} \\cos^{2}{\\left(\\theta \\right)} - 2 k_{1} k_{3} \\cos{\\left(\\theta \\right)} + k_{2}^{2} + 2 k_{2} \\cos{\\left(\\theta \\right)} - k_{3}^{2} + 1}} + \\cos{\\left(\\theta \\right)}}{k_{1} \\cos{\\left(\\theta \\right)} + k_{2} + k_{3} + \\cos{\\left(\\theta \\right)}}\\right)}{\\frac{\\left(\\sqrt{- k_{1}^{2} \\cos^{2}{\\left(\\theta \\right)} - 2 k_{1} k_{3} \\cos{\\left(\\theta \\right)} + k_{2}^{2} + 2 k_{2} \\cos{\\left(\\theta \\right)} - k_{3}^{2} + 1} + \\sin{\\left(\\theta \\right)}\\right)^{2}}{\\left(k_{1} \\cos{\\left(\\theta \\right)} + k_{2} + k_{3} + \\cos{\\left(\\theta \\right)}\\right)^{2}} + 1}$" + ], + "text/plain": [ + " ⎛ \n", + " ⎜ \n", + " ⎜ \n", + " ⎜ ⎛ __________________________________________________\n", + " ⎜ ⎜ ╱ 2 2 2 \n", + " ⎜(kâ‚â‹…sin(θ) + sin(θ))â‹…âŽâ•²â•± - kâ‚ â‹…cos (θ) - 2â‹…kâ‚â‹…k₃⋅cos(θ) + kâ‚‚ + 2â‹…kâ‚‚â‹…cos(θ\n", + "2⋅⎜───────────────────────────────────────────────────────────────────────────\n", + " ⎜ 2 \n", + " ⎠(kâ‚â‹…cos(θ) + kâ‚‚ + k₃ + cos(θ)) \n", + "──────────────────────────────────────────────────────────────────────────────\n", + " \n", + " ⎛ __________________________\n", + " ⎜ ╱ 2 2 \n", + " âŽâ•²â•± - kâ‚ â‹…cos (θ) - 2â‹…kâ‚â‹…k₃⋅c\n", + " ──────────────────────────────\n", + " \n", + " (kâ‚â‹…cos\n", + "\n", + " 2 \n", + " kâ‚ â‹…sin(θ)â‹…cos(θ) + kâ‚â‹…k₃⋅sin(θ) - kâ‚‚â‹…sin(\n", + " ─────────────────────────────────────────────────────\n", + "____________ ⎞ __________________________________________________\n", + " 2 ⎟ ╱ 2 2 2 \n", + ") - k₃ + 1 + sin(θ)⎠╲╱ - kâ‚ â‹…cos (θ) - 2â‹…kâ‚â‹…k₃⋅cos(θ) + kâ‚‚ + 2â‹…kâ‚‚â‹…cos(θ\n", + "────────────────────── + ─────────────────────────────────────────────────────\n", + " kâ‚â‹…cos(θ) + kâ‚‚ + k₃ + cos(θ) \n", + " \n", + "──────────────────────────────────────────────────────────────────────────────\n", + " 2 \n", + "____________________________________ ⎞ \n", + " 2 2 ⎟ \n", + "os(θ) + kâ‚‚ + 2â‹…kâ‚‚â‹…cos(θ) - k₃ + 1 + sin(θ)⎠\n", + "─────────────────────────────────────────────── + 1 \n", + " 2 \n", + "(θ) + kâ‚‚ + k₃ + cos(θ)) \n", + "\n", + " ⎞\n", + "θ) ⎟\n", + "──────────── + cos(θ)⎟\n", + "____________ ⎟\n", + " 2 ⎟\n", + ") - k₃ + 1 ⎟\n", + "─────────────────────⎟\n", + " ⎟\n", + " ⎠\n", + "──────────────────────\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " " + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sympy import diff\n", + "\n", + "dpsi_dtheta = diff(psi, theta)\n", + "\n", + "dpsi_dtheta" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "# We can implement the term dpsi_dtheta now in code. Therefore, we assume from now on that it is given.\n", + "\n", + "from sympy import Function\n", + "psi = Function('psi')(theta)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Coordinate systems" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\operatorname{CoordSys3D}\\left(knee_base, \\left( \\left[\\begin{matrix}1 & 0 & 0\\\\0 & 1 & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ (shank)\\mathbf{\\hat{i}_{ankle}}\\right), \\operatorname{CoordSys3D}\\left(ankle, \\left( \\left[\\begin{matrix}\\cos{\\left(\\psi{\\left(\\theta \\right)} \\right)} & - \\sin{\\left(\\psi{\\left(\\theta \\right)} \\right)} & 0\\\\\\sin{\\left(\\psi{\\left(\\theta \\right)} \\right)} & \\cos{\\left(\\psi{\\left(\\theta \\right)} \\right)} & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ \\mathbf{\\hat{0}}\\right), \\operatorname{CoordSys3D}\\left(base, \\left( \\left[\\begin{matrix}1 & 0 & 0\\\\0 & 1 & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ \\mathbf{\\hat{0}}\\right)\\right)\\right)\\right)$" + ], + "text/plain": [ + "knee_base" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from sympy.vector import CoordSys3D, AxisOrienter\n", + "from sympy import Matrix\n", + "\n", + "# The reference system at the origin of the ankle. It is defined as follows:\n", + "# -z is the rotation axis of the joint\n", + "# x points upwards (away from the platform, aligned with the global z axis)\n", + "B = CoordSys3D('base')\n", + "\n", + "orienter_psi = AxisOrienter(psi, -B.k )\n", + "\n", + "# coordinate system of the ankle joint (after applying the joint rotation)\n", + "T_ankle = B.orient_new('ankle', (orienter_psi, ))\n", + "\n", + "# helper coordinate system at the origin of the knee after applying the knee rotation\n", + "T_knee_base = T_ankle.locate_new('knee_base', shank * T_ankle.i )\n", + "\n", + "T_knee_base\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\operatorname{CoordSys3D}\\left(knee, \\left( \\left[\\begin{matrix}\\cos{\\left(\\theta \\right)} & \\sin{\\left(\\theta \\right)} & 0\\\\- \\sin{\\left(\\theta \\right)} & \\cos{\\left(\\theta \\right)} & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ \\mathbf{\\hat{0}}\\right), \\operatorname{CoordSys3D}\\left(knee_base, \\left( \\left[\\begin{matrix}1 & 0 & 0\\\\0 & 1 & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ (shank)\\mathbf{\\hat{i}_{ankle}}\\right), \\operatorname{CoordSys3D}\\left(ankle, \\left( \\left[\\begin{matrix}\\cos{\\left(\\psi{\\left(\\theta \\right)} \\right)} & - \\sin{\\left(\\psi{\\left(\\theta \\right)} \\right)} & 0\\\\\\sin{\\left(\\psi{\\left(\\theta \\right)} \\right)} & \\cos{\\left(\\psi{\\left(\\theta \\right)} \\right)} & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ \\mathbf{\\hat{0}}\\right), \\operatorname{CoordSys3D}\\left(base, \\left( \\left[\\begin{matrix}1 & 0 & 0\\\\0 & 1 & 0\\\\0 & 0 & 1\\end{matrix}\\right], \\ \\mathbf{\\hat{0}}\\right)\\right)\\right)\\right)\\right)$" + ], + "text/plain": [ + "knee" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "orienter_theta = AxisOrienter(theta, B.k )\n", + "\n", + "# coordinate system of the knee after applying the rotation\n", + "T_knee = T_knee_base.orient_new('knee', (orienter_theta, ))\n", + "\n", + "T_knee" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# express the end effector in the knee joint coordinate system (T_knee). This captures the forward kinematics of child joints.\n", + "x, y, z, alpha, beta, gamma = symbols(\"x y z alpha beta gamma\")\n", + "\n", + "from sympy.vector import BodyOrienter, Point\n", + "euler = BodyOrienter(alpha, beta, gamma, rot_order=\"XYZ\")\n", + "\n", + "P_eef = T_knee.orient_new(\"EEF\", euler, location=(T_knee.i * x + T_knee.j * y + T_knee.k * z))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "pos_vect = P_eef.origin.position_wrt(B)\n", + "\n", + "# express the EEF in the base coordinate system (ankle base)\n", + "p_eef = pos_vect.to_matrix(B)\n", + "\n", + "# o = P_eef.rotation_matrix(B)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Jacobian\n", + "\n", + "Pose of the end-effector\n", + "$$\n", + "p_{eef} = (x,y,z,\\alpha, \\beta, \\gamma )^T\n", + "$$\n", + "\n", + "The Jacobian $J \\in \\mathrm{R}^{6x1}$\n", + "$$\n", + "J = \\frac{\\partial p_{eef}}{\\partial \\theta}\n", + "$$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\displaystyle \\left[\\begin{matrix}- shank \\sin{\\left(\\psi{\\left(\\theta \\right)} \\right)} \\frac{d}{d \\theta} \\psi{\\left(\\theta \\right)} + x \\left(\\frac{d}{d \\theta} \\psi{\\left(\\theta \\right)} - 1\\right) \\sin{\\left(\\theta - \\psi{\\left(\\theta \\right)} \\right)} + y \\left(\\frac{d}{d \\theta} \\psi{\\left(\\theta \\right)} - 1\\right) \\cos{\\left(\\theta - \\psi{\\left(\\theta \\right)} \\right)}\\\\- shank \\cos{\\left(\\psi{\\left(\\theta \\right)} \\right)} \\frac{d}{d \\theta} \\psi{\\left(\\theta \\right)} - x \\left(\\frac{d}{d \\theta} \\psi{\\left(\\theta \\right)} - 1\\right) \\cos{\\left(\\theta - \\psi{\\left(\\theta \\right)} \\right)} + y \\left(\\frac{d}{d \\theta} \\psi{\\left(\\theta \\right)} - 1\\right) \\sin{\\left(\\theta - \\psi{\\left(\\theta \\right)} \\right)}\\\\0\\end{matrix}\\right]$" + ], + "text/plain": [ + "⎡ d ⎛d ⎞ ⎛d \n", + "⎢- shankâ‹…sin(ψ(θ))⋅──(ψ(θ)) + x⋅⎜──(ψ(θ)) - 1⎟⋅sin(θ - ψ(θ)) + y⋅⎜──(ψ(θ)) - 1\n", + "⎢ dθ âŽdθ ⎠âŽdθ \n", + "⎢ \n", + "⎢ d ⎛d ⎞ ⎛d \n", + "⎢- shankâ‹…cos(ψ(θ))⋅──(ψ(θ)) - x⋅⎜──(ψ(θ)) - 1⎟⋅cos(θ - ψ(θ)) + y⋅⎜──(ψ(θ)) - 1\n", + "⎢ dθ âŽdθ ⎠âŽdθ \n", + "⎢ \n", + "⎣ 0 \n", + "\n", + "⎞ ⎤\n", + "⎟⋅cos(θ - ψ(θ))⎥\n", + "⎠⎥\n", + " ⎥\n", + "⎞ ⎥\n", + "⎟⋅sin(θ - ψ(θ))⎥\n", + "⎠⎥\n", + " ⎥\n", + " ⎦" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sympy import diff\n", + "\n", + "# position part of the Jacobian\n", + "dp_dtheta = diff(p_eef, theta)\n", + "dp_dtheta = dp_dtheta.simplify()\n", + "\n", + "dp_dtheta\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "the expression $\\frac{\\partial \\mathbf{p}}{\\partial \\theta}$ above yields $\\frac{\\partial x}{\\partial\\theta}$ and $\\frac{\\partial y}{\\partial\\theta}$. $\\frac{\\partial z}{\\partial\\theta}$ is $0$.\n", + "\n", + "\n", + "To obtain the orientation part, we only need to consider the angle $\\gamma$ as the joint mechanism is 2D (rotatation around z axis). In other words $\\frac{\\partial \\alpha}{\\partial\\theta} = \\frac{\\partial \\beta}{\\partial\\theta} = 0$\n", + "\n", + "\n", + "\n", + "It is\n", + "\n", + "$$ \n", + "\\gamma = \\gamma_{0} -\\psi + \\theta\n", + "$$\n", + "\n", + "Partial derivative:\n", + "\n", + "$$\n", + "\\frac{\\partial \\gamma}{\\partial\\theta} = 1 - \\frac{\\partial \\psi}{\\partial\\theta} \n", + "$$\n", + "\n", + "\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Automatic code generation\n", + "\n", + "It is advantageous to implement the equations above by hand. Sine and cosine terms can be computed once for improved efficiency.\n", + "\n", + "*The following is just for reference*" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "from sympy import ccode #, cpp_generator\n", + "\n", + "def generate_code():\n", + "\n", + " cpp_code = ccode(dp_dtheta[0], assign_to=\"dx_dtheta\", standard=\"c11\")\n", + "\n", + " with open(\"/tmp/expressions.cpp\", \"w\") as f:\n", + " f.write(cpp_code)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "simox_control", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "e4599465d50e71b5ac4fe67b3a4b0cd1869600672e1938bc9720f881263763f9" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/python/four_bar_mechanism/equations.py b/python/four_bar_mechanism/equations.py new file mode 100644 index 0000000000000000000000000000000000000000..0f64d68ac46bf68721a784df9d3a8f72cba3cf03 --- /dev/null +++ b/python/four_bar_mechanism/equations.py @@ -0,0 +1,38 @@ +import os +import os.path + +from sympy import symbols, sin, cos, sqrt, asin, atan + +from hemisphere_joint_demo.sympy_to_code import SympyToCpp +sp.init_printing(use_latex='mathjax') + +# Actuation (P1_z, P2_z) + +# active joint +theta = symbols('theta') + +# passive joint +psi = symbols('psi') + +# Constants defining geometry. +theta0 = symbols('theta0') + +shank, p1, p2, p3 = symbols('shank p1 p2 p3') + + +k1 = shank / p1 +k2 = shank / p3 +k3 = (shank**2 + p1**2 + p3**2 - p2**2 ) / (2 * p1 * p3) + +cT = cos(theta) +sT = sin(theta) + +A = k1 * cT + k2 + k3 + cT # C.34 +B = -2*sT # C.35 +C = k1 * cT - k2 + k3 - cT # C.36 + +psi = 2 * atan((-B + sqrt(B * B - 4 * A * C)) / (2 * A)) # C.39 + + +def forwardKinematics(theta): + diff --git a/python/four_bar_mechanism/expressions.cpp b/python/four_bar_mechanism/expressions.cpp new file mode 100644 index 0000000000000000000000000000000000000000..4bba97d11074f047e06c4742298fbf7977e0c9f4 --- /dev/null +++ b/python/four_bar_mechanism/expressions.cpp @@ -0,0 +1,6 @@ +// Not supported in C: +// ImmutableDenseMatrix +Matrix([ +[-2*shank*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1) + x*(-sin(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))*cos(theta) + 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1) - 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))*cos(theta)/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1)) + y*(-sin(theta)*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) - cos(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(theta)*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1) + 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*cos(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1))], +[ -2*shank*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1) + x*(sin(theta)*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + cos(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) - 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(theta)*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1) - 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*cos(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1)) + y*(-sin(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))*cos(theta) + 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(theta)*cos(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1) - 2*(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))*(2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2))*(8*p1**2*p3**2*sin(theta)*cos(theta) + (-2*p1*p3*sin(theta) - 2*p3*shank*sin(theta))*(-p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank + p2**2 - p3**2 - 2*p3*shank*cos(theta) - shank**2) + (-2*p1*p3*sin(theta) + 2*p3*shank*sin(theta))*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(2*(4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))) + 2*cos(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))*sin(2*atan(p1*p3*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)))*cos(theta)/(p1**2*p3**2*(sqrt((4*p1**2*p3**2*sin(theta)**2 - (p1**2 - 2*p1*p3*cos(theta) - 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)*(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2))/(p1**2*p3**2)) + 2*sin(theta))**2/(p1**2 + 2*p1*p3*cos(theta) + 2*p1*shank - p2**2 + p3**2 + 2*p3*shank*cos(theta) + shank**2)**2 + 1))], +[ 0]]) \ No newline at end of file