diff --git a/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.cpp b/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.cpp
index 79c608f8107bea2af36334835cd4545b94fda712..318ed6eb747bc0c92f9935050e385854b5df29e2 100644
--- a/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.cpp
+++ b/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.cpp
@@ -25,23 +25,32 @@
  *      - https://ieeexplore.ieee.org/document/8206066/
  */
 
-#include <utility>
+#include "UnscentedKalmanFilter.h"
+
 #include <complex>
-#include <ArmarXCore/core/exceptions/local/ExpressionException.h>
+#include <utility>
 
-#include "UnscentedKalmanFilter.h"
+#include <ArmarXCore/core/exceptions/local/ExpressionException.h>
 
-template<typename SystemModelT>
-UnscentedKalmanFilter<SystemModelT>::UnscentedKalmanFilter(const PropCovT &Q, ObsCovT R, const AlphaT &alpha,
-                                                           StateT state0, StateCovT P0)
-        : Q_(Q), chol_Q_(Q.llt().matrixL().transpose()), R_(std::move(R)), alpha_(alpha), state_(std::move(state0)),
-          P_(std::move(P0)), weights_(alpha)
+template <typename SystemModelT>
+UnscentedKalmanFilter<SystemModelT>::UnscentedKalmanFilter(const PropCovT& Q,
+                                                           ObsCovT R,
+                                                           const AlphaT& alpha,
+                                                           StateT state0,
+                                                           StateCovT P0) :
+    Q_(Q),
+    chol_Q_(Q.llt().matrixL().transpose()),
+    R_(std::move(R)),
+    alpha_(alpha),
+    state_(std::move(state0)),
+    P_(std::move(P0)),
+    weights_(alpha)
 {
-
 }
 
-template<typename SystemModelT>
-void UnscentedKalmanFilter<SystemModelT>::propagation(const ControlT &omega, FloatT dt)
+template <typename SystemModelT>
+void
+UnscentedKalmanFilter<SystemModelT>::propagation(const ControlT& omega, FloatT dt)
 {
     StateCovT P = P_ + eps * StateCovT::Identity();
     ARMARX_CHECK(P.allFinite());
@@ -51,30 +60,33 @@ void UnscentedKalmanFilter<SystemModelT>::propagation(const ControlT &omega, Flo
 
     // set sigma points (Xi in paper when on Manifold, sigma in Tangent Space)
     Eigen::LLT<StateCovT> llt = P.llt();
-    if (llt.info() != Eigen::ComputationInfo::Success) {
+    if (llt.info() != Eigen::ComputationInfo::Success)
+    {
         P = calculateClosestPosSemidefMatrix(P);
         P += eps * StateCovT::Identity();
         llt = P.llt();
         ARMARX_CHECK(llt.info() == Eigen::ComputationInfo::Success);
     }
-    StateCovT xi_j_before = weights_.state.sqrt_d_lambda * llt.matrixL().transpose().toDenseMatrix();
+    StateCovT xi_j_before =
+        weights_.state.sqrt_d_lambda * llt.matrixL().transpose().toDenseMatrix();
     Eigen::Matrix<FloatT, 2 * dim::state, dim::state> xi_j_after;
     Eigen::Matrix<FloatT, 2 * dim::control, dim::state> w_j_after;
 
-    auto propagate_and_retract = [&omega, &dt, &state_after](long row, long offset, const StateT &state,
-                                                             const ControlNoiseT &noise,
-                                                             auto &xi_j) -> void
+    auto propagate_and_retract = [&omega, &dt, &state_after](long row,
+                                                             long offset,
+                                                             const StateT& state,
+                                                             const ControlNoiseT& noise,
+                                                             auto& xi_j) -> void
     {
         const StateT sig_j_after = SystemModelT::propagationFunction(state, omega, noise, dt);
         xi_j.row(offset + row) = SystemModelT::inverseRetraction(state_after, sig_j_after);
     };
 
-    auto calculate_covariance = [](FloatT wj, FloatT w0, auto &xi_j) -> StateCovT
+    auto calculate_covariance = [](FloatT wj, FloatT w0, auto& xi_j) -> StateCovT
     {
         SigmaPointsT xi_0 = wj * xi_j.colwise().sum();
         xi_j.rowwise() -= xi_0.transpose();
-        StateCovT cov_after =
-                wj * xi_j.transpose() * xi_j + w0 * xi_0 * xi_0.transpose();
+        StateCovT cov_after = wj * xi_j.transpose() * xi_j + w0 * xi_0 * xi_0.transpose();
         return cov_after;
     };
 
@@ -102,18 +114,19 @@ void UnscentedKalmanFilter<SystemModelT>::propagation(const ControlT &omega, Flo
     StateCovT new_P = P_after + Q;
     P_ = std::move((new_P + new_P.transpose()) / 2.0f);
     state_ = std::move(state_after);
-
 }
 
-template<typename SystemModelT>
-void UnscentedKalmanFilter<SystemModelT>::update(const ObsT &y)
+template <typename SystemModelT>
+void
+UnscentedKalmanFilter<SystemModelT>::update(const ObsT& y)
 {
     StateCovT P = P_ + eps * StateCovT::Identity();
     ARMARX_CHECK(P.allFinite());
     StateCovT xi_j = weights_.state.sqrt_d_lambda * P.llt().matrixL().transpose().toDenseMatrix();
     ARMARX_CHECK(P.llt().info() == Eigen::ComputationInfo::Success);
     ARMARX_CHECK(xi_j.allFinite());
-    Eigen::Matrix<FloatT, 2 * dim::state, dim::obs> y_j = Eigen::Matrix<FloatT, 2 * dim::state, dim::obs>::Zero();
+    Eigen::Matrix<FloatT, 2 * dim::state, dim::obs> y_j =
+        Eigen::Matrix<FloatT, 2 * dim::state, dim::obs>::Zero();
     ObsT y_hat = SystemModelT::observationFunction(state_);
 
     for (long j = 0; j < dim::state; j++)
@@ -125,62 +138,68 @@ void UnscentedKalmanFilter<SystemModelT>::update(const ObsT &y)
         y_j.row(j + dim::state) = SystemModelT::observationFunction(sig_j_minus);
     }
     ARMARX_CHECK(y_j.allFinite());
-    const ObsT y_mean = weights_.update.wm * y_hat + weights_.update.wj * y_j.colwise().sum().transpose();
+    const ObsT y_mean =
+        weights_.update.wm * y_hat + weights_.update.wj * y_j.colwise().sum().transpose();
     y_j.rowwise() -= y_mean.transpose();
     y_hat -= y_mean;
 
-    const ObsCovT P_yy = weights_.update.w0 * y_hat * y_hat.transpose() + weights_.update.wj * y_j.transpose() * y_j + R_;
+    const ObsCovT P_yy = weights_.update.w0 * y_hat * y_hat.transpose() +
+                         weights_.update.wj * y_j.transpose() * y_j + R_;
     ARMARX_CHECK(P_yy.allFinite());
     const Eigen::Matrix<FloatT, dim::state, dim::obs> P_xiy =
-            weights_.update.wj * (Eigen::Matrix<FloatT, dim::state, 2 * dim::state>() << xi_j, -xi_j).finished() * y_j /* + weights_.update.w0 * xi_0 * y_hat.transpose()*/;
+        weights_.update.wj *
+        (Eigen::Matrix<FloatT, dim::state, 2 * dim::state>() << xi_j, -xi_j).finished() *
+        y_j /* + weights_.update.w0 * xi_0 * y_hat.transpose()*/;
     ARMARX_CHECK(P_xiy.allFinite());
-    Eigen::Matrix<FloatT, dim::state, dim::obs> K = P_yy.colPivHouseholderQr().solve(P_xiy.transpose()).transpose();
+    Eigen::Matrix<FloatT, dim::state, dim::obs> K =
+        P_yy.colPivHouseholderQr().solve(P_xiy.transpose()).transpose();
     FloatT relative_error = (P_yy * K.transpose() - P_xiy.transpose()).norm() / P_xiy.norm();
     ARMARX_CHECK(relative_error < 1e-4);
     ARMARX_CHECK(K.allFinite());
     SigmaPointsT xi_plus = K * (y - y_mean);
     ARMARX_CHECK(xi_plus.allFinite());
     state_ = SystemModelT::retraction(state_, xi_plus);
-    StateCovT new_P = P - K * (P_yy) * K.transpose();
+    StateCovT new_P = P - K * (P_yy)*K.transpose();
 
     // make result symmetric
     P_ = calculateClosestPosSemidefMatrix(new_P);
 }
 
-template<typename SystemModelT>
-const typename UnscentedKalmanFilter<SystemModelT>::StateT &UnscentedKalmanFilter<SystemModelT>::getCurrentState() const
+template <typename SystemModelT>
+const typename UnscentedKalmanFilter<SystemModelT>::StateT&
+UnscentedKalmanFilter<SystemModelT>::getCurrentState() const
 {
     return state_;
 }
 
-template<typename SystemModelT>
-const typename UnscentedKalmanFilter<SystemModelT>::StateCovT &
+template <typename SystemModelT>
+const typename UnscentedKalmanFilter<SystemModelT>::StateCovT&
 UnscentedKalmanFilter<SystemModelT>::getCurrentStateCovariance() const
 {
     return P_;
 }
 
-template<typename SystemModelT>
+template <typename SystemModelT>
 typename UnscentedKalmanFilter<SystemModelT>::StateCovT
-UnscentedKalmanFilter<SystemModelT>::calculateClosestPosSemidefMatrix(const UnscentedKalmanFilter::StateCovT &cov)
+UnscentedKalmanFilter<SystemModelT>::calculateClosestPosSemidefMatrix(
+    const UnscentedKalmanFilter::StateCovT& cov)
 {
     const StateCovT new_P = ((cov + cov.transpose()) / 2.0f);
     Eigen::EigenSolver<StateCovT> solver(new_P);
-    Eigen::Matrix<FloatT, 6, 6> D = solver.eigenvalues().real().asDiagonal();
-    const Eigen::Matrix<FloatT, 6, 6> V = solver.eigenvectors().real();
+    Eigen::Matrix<FloatT, dim::state, dim::state> D = solver.eigenvalues().real().asDiagonal();
+    const Eigen::Matrix<FloatT, dim::state, dim::state> V = solver.eigenvectors().real();
     D = D.cwiseMax(0);
 
     return (V * D * V.inverse());
-
 }
 
-template<typename SystemModelT>
-UnscentedKalmanFilter<SystemModelT>::Weights::Weights(AlphaT alpha) : state(dim::state, alpha(0)),
-                                                                      control(dim::control, alpha(1)),
-                                                                      update(dim::state, alpha(2))
-{}
+template <typename SystemModelT>
+UnscentedKalmanFilter<SystemModelT>::Weights::Weights(AlphaT alpha) :
+    state(dim::state, alpha(0)), control(dim::control, alpha(1)), update(dim::state, alpha(2))
+{
+}
 
-template<typename SystemModelT>
+template <typename SystemModelT>
 UnscentedKalmanFilter<SystemModelT>::Weights::W::W(size_t l, FloatT alpha)
 {
     ARMARX_CHECK_GREATER(alpha, 0);
@@ -191,14 +210,10 @@ UnscentedKalmanFilter<SystemModelT>::Weights::W::W(size_t l, FloatT alpha)
     w0 = m / (m + l) + 3 - alpha * alpha;
 }
 
-template
-class UnscentedKalmanFilter<SystemModelSE3<float>>;
+template class UnscentedKalmanFilter<SystemModelSE3<float>>;
 
-template
-class UnscentedKalmanFilter<SystemModelSE3<double>>;
+template class UnscentedKalmanFilter<SystemModelSE3<double>>;
 
-template
-class UnscentedKalmanFilter<SystemModelSO3xR3<float>>;
+template class UnscentedKalmanFilter<SystemModelSO3xR3<float>>;
 
-template
-class UnscentedKalmanFilter<SystemModelSO3xR3<double>>;
\ No newline at end of file
+template class UnscentedKalmanFilter<SystemModelSO3xR3<double>>;
diff --git a/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.h b/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.h
index 0b005f495873de641643e0cc2dda38c43d2ab74f..b7da12e5027bafc5786c01e13e6063a32bc215cc 100644
--- a/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.h
+++ b/source/RobotAPI/libraries/ukfm/UnscentedKalmanFilter.h
@@ -29,20 +29,22 @@
 #define ROBDEKON_UNSCENTEDKALMANFILTER_H
 
 #include <Eigen/Dense>
+
 #include "SystemModel.h"
 
 
-template<typename SystemModelT>
+template <typename SystemModelT>
 class UnscentedKalmanFilter
 {
 public:
     using FloatT = typename SystemModelT::FloatT;
-    static constexpr float eps = 10*std::numeric_limits<float>::epsilon();
+    static constexpr float eps = 10 * std::numeric_limits<float>::epsilon();
     // variable dimensions:
     using dim = typename SystemModelT::dim;
     using StateT = typename SystemModelT::StateT;
     using ControlT = typename SystemModelT::ControlT;
-    using ControlNoiseT = typename SystemModelT::ControlNoiseT; // todo: correct name? Is it the same as ControlT?
+    using ControlNoiseT =
+        typename SystemModelT::ControlNoiseT; // todo: correct name? Is it the same as ControlT?
     using SigmaPointsT = typename SystemModelT::SigmaPointsT; // todo: rename
 
     using StateCovT = Eigen::Matrix<FloatT, dim::state, dim::state>;
@@ -52,8 +54,11 @@ public:
     using AlphaT = Eigen::Matrix<FloatT, 3, 1>;
 
 
-    UnscentedKalmanFilter(const PropCovT&  Q, ObsCovT  R,
-                          const AlphaT&  alpha, StateT state0, StateCovT  P0);
+    UnscentedKalmanFilter(const PropCovT& Q,
+                          ObsCovT R,
+                          const AlphaT& alpha,
+                          StateT state0,
+                          StateCovT P0);
     UnscentedKalmanFilter() = delete;
 
 private:
@@ -64,8 +69,10 @@ private:
     StateT state_;
     StateCovT P_;
 
-    struct Weights {
-        struct W {
+    struct Weights
+    {
+        struct W
+        {
             W(size_t l, FloatT alpha);
             float sqrt_d_lambda, wj, wm, w0;
         };
@@ -82,7 +89,6 @@ public:
     void update(const ObsT& y);
     const StateT& getCurrentState() const;
     const StateCovT& getCurrentStateCovariance() const;
-
 };
 
 extern template class UnscentedKalmanFilter<SystemModelSE3<float>>;